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Abstract

Inflation for retirees is different from and mostly higher than the macro-economic (average)
inflation rate for the entire population. In the U.S.A, for example, the Consumer Price Index

for the Urban population (CPI-U) calculated and reported by the Bureau of Labor Statistics
(BLS) has a lesser known cousin called the CPI-E (for the elderly) in which the sub-component
weights are based on the consumption patterns of Americans above the age of 62. This suggests

that Inflation-Linked Bond Funds (ILBFs) – whose individual component bond adjustments
are based on broad population (CPI-U) inflation – might not be the best hedge for individual
retirees ’ cost of living. But then again, broad shocks to inflation are likely to impact both
indices. So, motivated by the question – is it good enough? – the current paper uses lifetime ruin

minimization (LRM) techniques to investigate the optimal allocation between an ILBF and
a nominal investment fund for a retiree facing an exogenous liability. Our model trades
off the benefit of an imperfect hedge against the cost of lower investment growth. However, our

numerical results suggest that although ILBFs can be a large part of the optimal retirement
portfolio, it should be treated as just another asset class in the broad optimization problem as
opposed to a special or unique category.

1 Introduction and motivation

The first American baby boomer turned 65 on 1 January 2011, with over 70 million to

follow during the next 20 years. As a result, the financial services industry (in the

U.S.A. and around the world) is shifting its attention from wealth accumulation to

generating a sustainable retirement income. With the ongoing demise of defined

benefit (DB) pensions, one of the main concerns in creating an appropriate income

stream from a DC-style retirement account is the issue of inflation and price uncer-

tainty over 25–35 potential years of retirement.
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Against this backdrop, a number of financial commentators, including writers

at the Wall Street Journal and the New York Times, have urged retirees to allocate

a substantial portion of their retirement wealth to inflation-linked bonds, such as

TIPS and I-BONDS. These investments generate periodic income in real, as op-

posed to nominal units. In fact, a number of large financial services companies,

such as TIAA-CREF, PIMCO, Vanguard and Fidelity actively promote their

inflation-linked mutual funds as a hedge against an increasing cost of living,

especially for retirees. Holding a bond fund is more cost effective and feasible than

holding individual TIPS.

Oddly enough, there seems to be very little discussion as to whether the Consumer

Price Index for the Urban population (CPI-U) – which is the underlying adjustment

mechanism for most inflation-linked bonds – is an adequate measure of the inflation

rate experienced by retirees. In fact, since the early 1980s the U.S. Bureau of Labor

Statistics (BLS) has been calculating an experimental index called the CPI-E, for

Americans above the age of 62. This index weights its expenditure sub-components

based on the spending habits of the elderly, as opposed to the aggregate (urbandwelling

or wage earning) population. See Amble and Stewart (1994) or Hobijn and Lagakos

(2003) for more statistical and methodological details about this experimental

index. The index was motivated by a group of legislators within the U.S. House of

Representatives who wanted to introduce an alternative inflation index for retirees,

one that could be used to better adjust Social Security payments, see House of

Representatives (2001). Currently, Social Security payments in the U.S.A. are

adjusted each year based on the previous year’s inflation rate as measured by the

CPI-W, which is a sub-component of the CPI-U.1

Figure 1 all tables and charts are placed in the appendix exhibits the annualized gap

between the CPI-E (elderly) versus the CPI-U (urban, used to adjust inflation-linked

bonds) during the last 25 years. On average the gap is positive, by approximately

50 basis points per annum, which implies that the CPI-E increases at a greater rate,

compared with the CPI-U. If both of these indices moved in lock-step, the gap would

obviously be zero.

The reason for this out performance – or excessive inflation rate – is that retirees

have different consumption and spending habits compared with the general popu-

lation. They spend more of their disposable income on medical care and housing, and

of course these prices have increased more than other subcomponents during the last

25 years. Whether this will persist going forward, especially after the 2007/2008 de-

cline in housing prices is debatable. But, once again, our agenda is not to forecast

inflation but to alert readers to the implications of different inflation rates for differ-

ent groups on optimal asset allocation. Table 1 displays the relative importance and

1 We obviously don’t want to get caught-up in the minutia of inflation measurement and forecasting.
Technically though, the CPI-W is for a representative household where more than one-half of the
household’s income must come from clerical or wage occupations and at least one of the household’s
earners must have been employed for at least 37 weeks during the previous 12 months. The CPI-W’s
population represents about 32 percent of the total U.S. population and is a subset or part of the CPI-U’s
(which stands for Urban) population. The CPI-U is used for computing the coupons and inflation-
adjustments on Treasury Inflation Protection Securities (TIPS) as well as I-Bonds. From a practical
perspective the CPI-W and the CPI-U are much closer to each other in composition, relative to the
experimental CPI-E.
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weights of the major expenditure categories in the respective indices. Note that

medical care is weighted 10.81% in the CPI-E but only 5.27% in the CPI-U, for

example. Likewise, food is 12.87% in the CPI-E but is 16.56% higher in the CPI-U.

Needless to say, any financial instrument – such as inflation-linked bond funds

(ILBFs) – whose returns are linked to the CPI create an imperfect hedge for a typical

retiree’s personal inflation rate.

Figure 2 illustrates the extent to which the investment returns from holding

an ILBF might differ from changes (or shocks) to the inflation rate for the elderly.

Table 1. Components of the CPI, wage-earners (W ) versus urban (U ) versus elderly (E )

Spending on % of CPI-W % of CPI-U % of CPI-E

Apparel 3.57 3.86 2.42

Education and communication 5.97 5.51 3.19
Food and beverage 15.10 16.56 12.87
Housing 42.24 39.96 47.51
Medical care 6.35 5.27 10.81

Recreation 5.38 4.84 4.62
Transportation 17.95 20.37 14.99
Other goods and services 3.45 3.64 3.59

Total 100 100 100

These weights are computed and selected by the BLS, disclosed in April 2008. Note that
weights vary over time based on the consumer expenditure survey conducted by the BLS and
with inflation adjustments.

Figure 1. Annualized gap: CPI-E inflation minus CPI-U inflation.
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It displays the ongoingmarket value of $1 invested in a hypothetical ILBF inDecember

2003, as well as the total change in the CPI-E starting from December 2003. Two

additional curves were traced in Figure 2, showing a constant rate of 3% and 4%

applied to the initial $1 investment. This hypothetical fund was constructed (by

the authors) by averaging the monthly total returns the four most popular ILBFs

available to retail investors in theU.S.A. (they are T.Rowe, Fidelity, TIAACREF and

Vanguard). In other words, at the end of the month the portfolio was rebalanced so

Figure 2. Values of $1 invested ILBF* versus the nominal value of an adjusted

$1 liability. *Based on the average returns of four ILBFs.

Figure 3. The fit. Changes in CPI-E versus changes in inflation- linked bond fund
total return monthly periods from 12/02 to 11/08.
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that 25% was held in each of the four ILBFs. Note how the value of this investment

increases over time, somewhere between 3% and 4% per year, but is more volatile

and often falls outside this range. In contrast, the CPI-E-adjusted value of the initial

$1 stays within this 3–4% band.

Figure 3 takes this analysis one step further. It displays the results from regressing

the monthly returns from the above-mentioned hypothetical portfolio of ILBFs

against the changes in the unique CPI for the elderly. If the fit was perfect, the points

would all fall on a 45x line. Clearly, this is not the case. The R2=0.06, which is an

estimate we will use later in our (continuous time) model. We do not have enough

data points to conduct a statistically significant analysis for (the lower frequency)

annual returns, although the R2 is higher over longer return windows, as one would

expect. On the other hand, we should note that when the analysis underlying Figure 2

and/or Figure 3 is conducted for any of the individual ILBFs, as opposed to the hypo-

thetical average of the four – which diversifies the holder further against risks – the

results are even more pronounced. More importantly, each individual retiree will

have their own desired weightings for consumer expenditures, which might further

reduce the correlations between their cost of living (e.g., CPI-ME) and aggregate

inflation. Thus, although any given ILBF (or inflation-adjusted pension) is expected

to increase over time as general prices increase, it is important not to confuse

an investment that increases over time with an investment that provides perfect

insurance against individual-specific shocks.

Once again, we are not the first to point out that personal inflation rates are distinct

frommacro-economic inflationmeasures, especially as it pertains to retirees. Just as an

example, a group of well-known economists, Ernst et al. (1997) used a unique dataset

of prescription drug prices to focus on the challenges of measuring inflation for re-

tirees. In fact, some researchers – such as Jennings (2006), or Aziz et al. (2001) – have

argued that as a result of these imperfect measures, CPI-linked bonds (which are the

building blocks of ILBFs) should be disaggregated into individual sub-components

so that consumers can reconstruct the bonds using their preferred weights. In this

way, a suitably tailored bond fund would generate payments and provide income

based on a rate that is linked to the medical care component of the CPI, for example.

Retirees and for that matter any consumer with a basket of consumption that differs

from the general CPI, would be able to pick and choose their own ILBF that would

hedge their own inflation rate.

And, while this idea is great in theory, consumers and current retirees, who are still

waiting for access to this engineering innovation, must contend with a generic ILBF

that is weakly correlated to their desired consumption’s cost of living adjustments.

The pragmatic question is : How much wealth should they allocate to an imperfect

insurance policy? Are they better off taking their chances on a long-run equity risk

premium – or balanced stock/bond fund – that is expected to grow their portfolio over

time?

This is the impetus for our paper. In the real-world absence of a perfect hedge, we

gauge whether retirees are better-off investing in an asset class that is expected to

grow over time – such as a diversified mutual fund – versus investing in an asset class

that may (or may not) hedge a retiree’s cost of living. We develop a model that
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illustrates how the correlation or lack thereof, between ILBF and a retiree’s personal

inflation rate impacts the demand and optimal allocation to this asset.

1.1 Our position within the literature

Most ‘ lifecycle choice’ models are built and calibrated assuming the consumer

seeks to maximize their end-of-period utility of wealth or their ongoing utility of

consumption under a variety of risk-aversion parameters and inter-temporal rates

of substitutions. This approach to the dynamic asset allocation problem was

initiated by Merton (1971) and has spawned hundreds and possibly thousands of

papers using these techniques. See Campbell and Viciera (2002) for an extensive

literature review. A recent monograph by Ibbotson et al. (2007) takes the same utility-

based approach as well. In related literature, Kothari and Shanken (2004) derive

an optimal asset allocation with inflation-linked bonds, although not within

the context of a retiree facing exogenous liabilities. We do use a number of their

parameter estimates for our inputs, but differ in methodology and objective.

The ‘calibrating’ asset allocation literature continues to grow, and due to the lack of

space for a comprehensive literature review we refer the interested reader to recent

papers by Horneff et al. (2008) or Hoevenaars et al. (2008) as well as Cairns et al.

(2006).

Our primary model, however, is predicated on a retiree who seeks to minimize the

probability of lifetime ruin, assuming that their expenditures are stochastic (but exog-

enous) in nominal terms. The lifetime ruin minimization (LRM) framework has been

adopted or discussed in a number of recent papers. Examples within this literature

include the original paper by Browne (1995) with a deterministic horizon, Milevsky

and Robinson (2000) in a static framework with a stochastic horizon, Albrecht and

Maurer (2002), Young (2004) in a dynamic framework, Moore and Young (2006),

Bayraktar and Young (2007) as well as the recent working paper Robinson and

Tahani (2007). More broadly, our paper is related to Gupta and Li (2007) and

Haberman and Vigna (2002). In all these articles, normative models are proposed for

individuals as they transition into retirement under a variety of objective functions.

They do not necessarily maximize discounted utility of lifetime consumption, a la

Merton (1971), but instead use a framework that eliminates the need for requiring

subjective discount rates and/or coefficients of relative risk aversion. The LRM ap-

proach resonates with some fraction of the wealth management community, which

is one of the reasons why we have adopted it as a framework for this analysis. More

importantly, by stripping away time, risk and substitution preferences we are able to

directly measure the impact of not having a perfect hedge on the probability of suc-

cess and the affordability of a given projected liability. Our paper is also related to

recent work by Wang (2009) and Gao (2009) in that we also use the Hamilton–

Jacobi–Bellman (HJB) formulation and techniques to analyze and extract the ruin

probability from a retirement income perspective. From a methodological point of

view the contribution of this paper is to extend the existing literature on ruin-minimizing

optimal control to the casewhere there are three – as opposed to just one – state variables,

in an incomplete market.
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The additional level of complexity eliminates the ability to derive analytic solutions

and expressions for the optimal control, since we are left with a collection of PDEs.

Our paper provides numerical results that help shed light on the optimal demand for

CPI-linked bonds, by retirees who are concerned with a simple objective function:

minimizing the probability of running out of money before running out of life.

The remainder of this paper is organized as follows. Section 2 develops our

underlying optimization model. Section 3 presents the derivation of the HJB equation

satisfied by the ruin probability and methodologies for solving the equation. Section 4

provides numerical examples and displays relevant results. Section 5 concludes the

paper and in the appendix more technical details are provided.

2 The underlying model

Consistent with the LRM references cited above, our model retiree starts with initial

(nest egg) wealth denoted by W0=w, from which he/she spends at a rate of $1 per

annum, initially. Practitioners refer to this as an initial spending rate of 1/w. We

assume that the retiree’s exogenous liabilities or the annual rate of desired con-

sumption – measured in nominal terms – evolve according to the diffusion process :

dLt=pLtdt+jLtdB
p
t , L0=1, (1)

where the parameter p is the expected cost-of-living adjustment (COLA), which

is unique to the retiree, j is the volatility rate and Bt
p is the Brownian motion driving

the uncertainty COLA uncertainty. For example, a retiree might expect his or her

spending will increase by p=4% each year, with a volatility of j=3%. Think of this

as a personal inflation index/rate. Figure 2 – displayed earlier – represents one possible

sample path of Lt from the December/03 to December/08 period.

In our simple model, the retiree’s net worth ofW0=w can be allocated between two

types of investment funds. The first is a lower-risk ILBF that evolves according to the

diffusion process :

dIt=rItdt+gItdB
r
t , I0=1, (2)

where r is the expected return – in nominal terms – and g is the volatility. In this case

Bt
r denotes the Brownian motion driving the ILBF. It is important to emphasize that

It does not represent the price of a particular CPI-linked bond, nor does it represent

a coupon rate. Rather, one can best think of It as a unit value of a mutual fund2

that invests in a collection of CPI-linked bonds across various maturities, where all

coupons and maturity payments are re-invested in the fund. Figure 2 also presents a

possible sample path for It, over the same December/03 to December/08 period. It

was clearly more volatile than Lt, and had a low correlation, as per Figure 3. Typical

parameter values could be an expected r=5 nominal investment return, which would

consist of 2 real-return and perhaps 2.5 inflation and a 0.5 inflation risk premium,

although the exact decomposition is completely unnecessary for our analysis.

2 We obviously do not attempt to offer or develop a complete model that prices all CPI-linked bonds in the
most advanced term-structure sense. For something along those lines, we refer interested readers to
Jarrow and Yildirim (2003) for example. We are focused on a basic portfolio of CPI-linked bonds within
a mutual fund structure.
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The typical volatility g would be in the 8% range. These numbers are consistent

with Ibbotson Associates estimates of the long-run volatility of a typical CPI-linked

mutual fund, again in nominal terms.

The second investment alternative is an equity-based investment mutual fund that

evolves according to the diffusion process :

dYt=mYtdt+sYtdB
y
t , Y0=1, (3)

where m is the expected nominal return and s>0 is the volatility of the risky fund.

Typical parameter values are between 6% and 11% for the expected fund return m

and 10%–30% for the fund volatility s. Nothing is new here.

The correlation structure between the Brownian motions driving the uncertainty is

as follows. First, the correlation between Bt
p (driving the retiree’s personal inflation

rate or COLA) and Bt
r (driving the ILBF), is relatively high but not 100%. It is

denoted by rpr. Likewise, the correlation between Bt
p and Bt

y (the mutual fund) is

obviously lower than rpr, and will be denoted by rpy. Finally, the correlation between

Bt
y and Bt

r is denoted by rry. Visually, the correlation structure is as follows:

tL  (COLA) tI  (ILBF) tY  (Stocks) 

1 rπρ yπρ
tL

rπρ 1 ryρ
tI

yπρ ryρ 1 tY

which – to be invertible – imposes some natural conditions on the relationship be-

tween the three available correlations, which we will address later. In terms of cali-

bration, Kothari and Shanken (2004) estimated the correlation between equity

market returns and (hypothetical) CPI-linked funds returns is close to zero, so that

rryB0. For the most part, we will use this parameter estimate in our numerical

examples. Likewise, the correlation rpr between the CPI-linked fund and the retiree’s

COLA is a matter of debate – and the core concern within our paper – so we will use

two extreme cases ; the first being a low correlation of 40% and the second being a

high correlation of 95%. Finally, the correlation between the investment fund and

the liabilities is partially constrained by the invertability of the correlation matrix (4),

which we discuss later.

Putting all this together, the dynamics for the retiree’s investment portfolio will

obey:

dWt=atWt
dIt
It

+(1xat)Wt
dYt

Yt
xLtdt, W0=w, (5)

where at is the fraction of the portfolio that is allocated to the ILBF and (1xat) is the

fraction allocated to the investment or equity-based mutual fund. Again, Lt is defined

as the consumption rate, i.e., consumption per unit of the time and is assumed

exogenous as opposed to optimized.
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With the LRM approach, the retiree’s problem is to minimize the probability of

ruin over a retirement horizon T=O, but with a random time of death td, under a

given law of mortality. The infinite horizon might sound odd in the context of a

human life, but obviously the force of mortality will eventually kill the retiree well

before T=O. So in some sense it is just a technicality. Also, the uncertainty in the

length of human life can be hedged using pension annuities and our model can always

be framed in terms of the choice between CPI-linked payout annuities and market-

linked variable annuities. In other words, irrespective of whether they pose the

problem as optimal allocations to non-annuitized investments or to income annuities,

the underlying issue is the same.

Formally, the objective function can be stated as

w(w, l, t)= min
0fatf1

Pr [t0<tdjWt=w,Lt=l, td>t], (6)

where t0 is the time at whichWt first becomes zero. The additional constraint ato0 is

imposed to preclude any short positions in the ILBF and atf1 is imposed to preclude

any leveraged position. Our technical objective is to locate the optimal control at*(w, t)

as a function of the drift and diffusion parameters m, s, p, j, r, g as well as the

correlation parameters rpr, rpy and rry. As we have stated earlier, we are particularly

interested in how at*(w, t) varies with respect to changes in the correlation rpr between

the CPI and retiree’s COLA or personal inflation rate.

Before we proceed to solve for the optimal control and the corresponding minimal

ruin probability, we note the following. The qualitative interpretation of j=0 is that

the retiree’s consumption liabilities will not fluctuate in nominal terms, although they

can certainly fluctuate in CPI-adjusted terms. Likewise, the interpretation of g=0 is

that the ILBF grows deterministically over time at a rate or r, which means that

there is no CPI risk in the system. Finally, when both j=0 (i.e., no liability volatility)

and g=0 (no CPI risk), our problem boils down to minimizing the probability of

ruin in a complete market, which most recently was examined by Moore and Young

(2006). Keep in mind, however, that the absence of any risk-free asset in either

nominal or personal-inflation adjusted terms, implies that the retiree can never reduce

the ruin probability w(w, t) to zero by immunizing (e.g., annuitizing) the consumption

liability stream. The problem boils down to an economic trade-off between: (i) in-

vesting retirement wealth in an asset Yt that is expected to earn m>p, and is greater

than the projected increase in the retiree’s cost of living, and (ii) investing in

the relatively safe (and highly correlated) asset It, which is not expected to earn

as much as Yt, since r<m. Hence, the title of this paper, should retirees insure

against their inflation rate by allocating a substantial portion of their wealth to

an imperfect hedge or should they just ‘worry’ about it, and instead invest more

aggressively.

3 The HJB equation

In this paper, we use Gompertz mortality for the hazard rate and the time variable

is equivalent to biological age. The ruin probability satisfies the following HJB
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equation:

lay=ya+ min
0faf1

H, (7)

where

H :¼ 1

2
a2g2+(1xa)2s2+2a(1xa)rrygs
� �

+j2x2 arprg+(1xa)rpys
� �

j
� �

x2yxx

+ arx+(1xa)mxx1xpx½ �+j2xx arprg+(1xa)rpys
� �

jx
� �

yx, (8)

with boundary conditions

y(0, a)=1, y(O, a)=0, y(x,O)=0: (9)

Here we collapse w and l into a single variable x=w/l with y(x, a)=w(w, l, a), and

reduce the dimension of the HJB by one. The detailed derivation can be found in the

appendix.

On a related note, when the investment portfolio consists of a risk-free asset and

consumption rate is a constant, it can be shown that the ruin can be avoided under

certain conditions, and the probability of ruin, when it is not zero, is a convex func-

tion of the wealth, as shown by Young (2004). However, the situation considered in

this paper is more complicated. When the liability and the risky assets are completely

correlated, it is possible to avoid ruin when the wealth level is sufficiently high. On the

other hand, when the risky assets and liability are not perfectly correlated, the

probability of ruin is no longer a convex function of wealth. This adds an additional

complexity to the solution procedure. We refer the readers to the appendix for more

details.

4 Numerical solutions and examples

4.1 Parameter values

Before we present the results we provide the rationale for the choice of relevant

parameter values. The first risky asset Yt, is a classical investment mutual fund that

is expected to earn a nominal m between 6% and 11% with a volatility of s=20%.

The second risky asset is the ILBF It, whose expected (nominal) return is r=5% with

a volatility of g=8%. In most of our numerical examples we assume that the two

risky assets (ILBF and equity/stock fund) are uncorrelated (even though our meth-

odology can readily handle any correlation between the two). In fact, one of the

benefits of using two uncorrelated assets is that this deliberately biases our results

away from investing in the equity-based fund Yt as a hedge against the retiree’s

liabilities.

The retiree starts with a consumption liability rate of L0=$1 per year at retirement

but at a varying level of initial wealth W0, allocated among Yt and It. The retiree

withdraws a stochastic Lt, t>0 per year. As discussed within the derivation, we as-

sume that 0fatf1, and thus prohibit leverage and short sales. We assume that Lt

increases by p=4% per annum, under two separate cases : volatility of j=3% (high)
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and 1% (low). We assume that the CPI-linked fund has a higher expected return r,

relative to the liabilities and with greater volatility g=8%. Ultimately, we are inter-

ested in the minimal probability of ruin assuming the correlation between liabilities

Lt and bond funds returns It is rpr=95% (high) and 40% (low). Moreover, we are

interested in how the decreasing return of the equity-based asset will force a greater

allocation to the bond fund. We are also interested in the minimal ruin probability

as a function of the correlation between the CPI-based bond fund and the con-

sumption liability rpr. The value of the remaining correlation coefficient is taken to

be rpy=0.25, which is chosen so that the positivity of the correlation matrix is

guaranteed.

All the computations are carried out with an initial retirement age of a=65 and a

time horizon of T=60 (a maximum age of 125). We have experimented with a longer

time horizon and the results are virtually identical, since obviously the retiree dies

well before T=60. We used the so-called Gompertz mortality rate in the numerical

results, which implies that the actuarial force of mortality satisfies the following

equation:

la=l0+
1

b
exp

axm

b

� �
: (10)

The hazard/mortality rates become sufficiently large for a large T, so the survival

rate is negligible after 125 years of life. For the result we displayed, we used the set

of parameter values : m=86.3, b=9.5 and l0=0.003. The source of these numbers

is Milevsky (2006). Also, to carry out the computations, we have replaced the infinite

domain 0fx<O by a finite one 0fxfxmax. We found that as long as xmax is suf-

ficiently large, the effect on the solution is small. We have chosen xmax=200. This is

equivalent to assuming that the ruin probability is zero when the wealth to liability

ratio is 200. A total of 1,000 grid points are used for the state variable x=w/l and

240 time steps in time. We also experimented with larger number of grid points

in x and a, and almost identical results were obtained. Finally, we have also compared

the solutions obtained by explicit and implicit methods. Again, the results are

virtually the same.

4.2 Cases and examples

In Table 2, we present the numerically computed values of the minimum ruin prob-

ability and the asset allocation percentagea* for a high correlation rpr=95%between

(shocks to) the COLA and (innovations to) the CPI-linked fund, together with a high

volatility for the consumption liability j=3%. We are interested in the interaction of

the assumed equity return m and the initial spending rate 1/w.

Here is how to interpret the results. A 65-year-old retiree with initial investment

wealth (nest egg) of $1,000,000 wants to spend/consume $40,000 per year adjusted

for personal inflation. In the language of our model, this is a desired spending rate of

4% and is equivalent to an initial wealth to consumption ratio ofW0=25. The retiree

estimates that this liability Lt will increase on average by p=4% per year (using

continuous compounding) with a volatility of j=3%. The retiree has a choice of
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investing wealth between a CPI-linked mutual fund that is expected to earn r=5%

per year with a volatility of g=8% and a riskier equity (or balanced) fund. The

investment fund has a volatility of s=20% and the expected return is denoted by m.

Tables 2 and 3 display the optimal allocation to the CPI-linked fund depending on

the retiree’s subjective estimate of the expected return m. For example, if the equity

(balanced) fund is expected to earn a mere m=6%, which is 100 basis points more

than the CPI-linked fund, the initial optimal allocation to the CPI-linked fund is

72.6%. The other 27.4% is allocated to the equity fund. Obviously, since the

expected return m from the equity fund is low the majority of the nest egg should

rationally be placed in the CPI-linked fund. In this case, under the optimal strategy,

the lifetime probability of ruin is 24.4%. This, recall, is the lowest possible ruin

probability – from the set of all possible dynamic investment strategies – given the

specified parameters. Now, if the retiree expects the return on the equity fund to be

m=11%, which is 500 basis points higher than the previous example, then the optimal

allocation of the CPI-linked fund is a (much) lower than 56%. This means that 64%

should be allocated to equity. Naturally, if one is more optimistic about equity (m),

the optimal allocation is greater. In this case, the minimal ruin probability is a mere

6.5% as opposed to 24.4%.

Table 2. Optimal allocation to ILBF assuming high (95%) correlation with

personal inflation

Expected

Investment
Fund return (%)

W0=18 W0=20 W0=22 W0=25

Spend=5.5% Spend=5.0% Spend=4.54% Spend=4.0%

a* y a* y a* y a* y

m=6 0 0.478 0.300 0.407 0.541 0.339 0.726 0.244

m=7 0.076 0.430 0.306 0.359 0.477 0.293 0.642 0.205
m=8 0.127 0.378 0.312 0.307 0.453 0.244 0.599 0.165
m=9 0.165 0.324 0.323 0.256 0.445 0.197 0.576 0.126

m=10 0.201 0.271 0.339 0.206 0.447 0.153 0.564 0.093
m=11 0.233 0.219 0.357 0.160 0.454 0.114 0.560 0.065

Note: Assets that are not invested in the ILBF are allocated to Equity Fund with mean return
m, and volatility s=20%. The expected return from ILBF is r=5%, with volatility g=8%.
Correlation between ILBF and Equity Fund return is rry=0%. Correlation between personal
inflation and Equity Fund return is rpy=25%. Note that there is a constraint on the third
correlation figure, rpy needed for the positivity of the covariance matrix. For rry=0 and
rpr=0.95, we find that rpy<31.225%. In the computations, we have chosen rpy=25%. All
these numbers are consistent with – although not identical to – the Ibbotson Associates esti-
mates for the behavior of TIPS-based funds, which invest in long-maturity CPI-linked bonds.
The underlying model assumes the retiree starts with W0 in liquid assets and spends L0=1 per
year, which increases by an expected p=4% with a volatility of j per year. The column headed
by a* denotes the optimal allocation and the column headed by y denotes the minimum ruin
probability.
High (rpr=95%) correlation with personal inflation rate
High (j=3%) volatility of personal inflation rate; expected p=4%
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All the numbers in Table 2 assume that the correlation between the (shocks to)

retirement liabilities Lt and the CPI-linked fund returns is quite high, at rpr=95%.

To contrast this case, in Table 3 we display the results of the minimum ruin prob-

ability y and optimal asset allocation percentage a* for a lower correlation value of

rpr=40% between the personal inflation rate shocks and the returns to the CPI-

linked fund. We still assume the (high) volatility of personal inflation, j=3%. In this

Table 4. Optimal allocation to ILBF

Expected
Investment

Fund return (%)

Assuming W0=33.3, initial spending rate of 1/33.3=3%

rpr=0.25 rpr=0.50 rpr=0.95

Volatility s Volatility s Volatility s

10 15 20 10 15 20 10 15 20

m=6 0.485 0.686 0.795 0.521 0.707 0.808 0.590 0.746 0.832
m=8 0.365 0.577 0.710 0.410 0.604 0.728 0.503 0.660 0.763

m=10 0.325 0.520 0.654 0.377 0.552 0.676 0.486 0.621 0.721

Cost of living to increase by p=4% per year, with a volatility of j=3%. Expected return from
the ILBF is r=5% per annum with a volatility of g=8%. The correlation between the equity
fund and the ILBF is rry=0%. Correlation between the liability and the investment fund is
rpy=25%. This table examines the low (3%) spending rate case.

Table 3. Optimal allocation to ILBF assuming low (40%) correlation with

personal inflation

Expected

Investment
Fund return (%)

W0=18 W0=20 W0=22 W0=25

Spend=5.5% Spend=5.0% Spend=4.54% Spend=4.0%

a* y a* y a* y a* y

m=6 0.089 0.479 0.435 0.408 0.624 0.340 0.735 0.249

m=7 0.143 0.432 0.366 0.361 0.517 0.296 0.645 0.212
m=8 0.164 0.381 0.341 0.311 0.468 0.249 0.590 0.172
m=9 0.185 0.328 0.334 0.260 0.444 0.203 0.556 0.135

m=10 0.206 0.275 0.337 0.211 0.434 0.159 0.535 0.101
m=11 0.229 0.223 0.344 0.166 0.431 0.120 0.523 0.072

Note: Assets that are not invested in the ILBF are allocated to Equity Fund with mean return
m, and volatility s=20%. The expected return from ILBF is r=5%, with volatility g=8%.
Correlation between ILBF and Equity Fund return is rry=0%. Correlation between personal
inflation and Equity Fund return is rpy=25%. Note that the third correlation figure,
rpy<91.66% is forced by the two other values rry=0 and rpr=0.40. For consistency, we have
chosen the same value as before, rpy=25%.
Low (rpr=40%) correlation with personal inflation rate
High (j=3%) volatility of personal inflation rate; expected p=4%
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case, notice that for the same earlier-mentioned W0=25, which is a spending rate of

4%, the optimal allocations to the CPI-linked fund are (generally, although not

always) lower. The minimal ruin probabilities y are uniformly higher in Table 3

compared to Table 2. The intuition is simple. If the CPI-linked fund is a ‘worse’

hedge for the retirement liabilities, the lifetime probability of ruin is higher, even

under the most efficient or optimal investment strategy.

In Table 4, we present a different perspective on the results, by comparing the

allocations as a function of perceived equity-market volatility. For example, a retiree

who expects equities (investment fund) to earn m=10% and market volatility to be of

the order of s=20%, should allocate 72% of his nest egg to CPI-linked bonds.

However, if the volatility can be controlled and is reduced to a mere s=10% an-

nualized, then the optimal allocation to the CPI-linked fund falls to 48%. And, these

results are obtained when the correlation between personal inflation and returns to

the CPI-linked fund are high at rpr=95%. When the correlation is much weaker at

rpr=25%, the optimal allocations to the CPI-linked fund drop to between 32% and

65%. Note that despite the desire to minimize lifetime ruin probability, the allocation

to the index-linked bond fund (ILBF) can be less than a third of the optimal port-

folio.

Finally, in order to provide insight on how a dynamic (versus static) asset allo-

cation strategy helps to lower the ruin probability y, we have plotted several key

quantities in Figure 4. The underlying parameter values are the same as those in

Table 2 with an expected equity return of m=8%. First, the minimum ruin prob-

ability y as well as the ruin probabilities assuming a 100% allocation to the ILBF

(a=1) or 100% allocation to the equity-based fund (a=0) are presented in Figure

4(a). Note how the optimal strategy results in a ruin probability that is lower than

either of the extreme allocations. Then, the variation of the minimum ruin probability

with age is plotted in Figure 4(b) and the dynamics of the optimal asset allocation

ratio a* at different ages is plotted in Figure 4(c). In order to gain some intuition for

Figures 4(b) and 4(c) one should focus on the x-axis point where w/l is 20 units. This

represents an individual with assets worth 20 times their current level of consump-

tion. At the age of 80, this is a very fortunate situation because the ruin probability

is less than 5% in Figure 4(b). However, at the age of 65, this wealth-to-liability

ratio induces a ruin probability of approximately 20%. Obviously, as the wealth-to-

liability ratio increases, the entire vector of ruin probabilities declines, and reaches

zero at approximately 50-to-1, Tables 5 and 6.

Note in Figure 4(c) that the optimal allocation to the CPI-linked fund, which is

represented in the y-axis, depends on age but asymptotes to about 80% when the

wealth ratios are very high. At lower levels of wealth, the allocation to the CPI-linked

fund is zero, especially at younger ages.

One of the main objectives of this study is to investigate the ‘correlation impact. ’

In order to provide a graphical illustration, we have plotted a* (asset allocation) and

y (ruin probability) against the wealth-to-liability ratio w/l for three different

correlation scenarios : rpr=0, 0.4 and 0.95. The results are displayed in Figure 5. This

allows us to directly observe (only) the impact of the correlation between the personal

inflation rate and the returns to the CPI-linked fund. One of the more noticeable
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(a)

(b)

(c)

Figure 4. Ruin probability as function of wealth-to-

liability ratio. (a) Impact of strategy. (b) Impact of age.
(c) Allocation to CPI fund as function of wealth-to-
liability ratio.
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results is the reversal of the asset allocation strategy – from safety to gambling – at a

critical value of w/l. This is typical of all ruin minimization models, see Browne

(1999), for example, where at some point the retiree decides to gamble (and hence

volatility is welcomed.).

In sum, we do not expect the normative model developed here to drive actual asset

allocation recommendations at retirement, especially given the rather restricted

Table 5. Optimal allocation to ILBF (b=0.5)

Expected
Investment

Fund return (%)

W0=18 W0=20 W0=22 W0=25

L0/W0=5.5% L0/W0=5.0% L0/W0=4.54% L0/W0=4.0%

a* c*/W0 a* c*/W0 a* c*/W0 a* c*/W0

m=6 0.7647 0.0523 0.7600 0.0584 0.7562 0.0633 0.7517 0.0692
m=7 0.6620 0.0530 0.6532 0.0590 0.6460 0.0640 0.6374 0.0699
m=8 0.5587 0.0539 0.5458 0.0599 0.5353 0.0649 0.5227 0.0708

m=9 0.4549 0.0550 0.4381 0.0610 0.4243 0.0660 0.4077 0.0719
m=10 0.3507 0.0563 0.3298 0.0623 0.3128 0.0673 0.2924 0.0733
m=11 0.2459 0.0578 0.2211 0.0639 0.2009 0.0689 0.1767 0.0749

Note: Assets that are not invested in the ILBF are allocated to Investment Fund with mean
return m, and volatility s=20%. The expected return from ILBF is r=5%, with volatility
g=8%. Correlation between ILBF and Investment Fund return is rry=0%. Correlation be-
tween liability and Investment Fund return is rpy=25%.
High (rpr=95%) correlation with spending/liabilities
High (j=3%) volatility of spending/liabilities ; p=4%

Table 6. Optimal allocation to ILBF (b=1.5)

Expected

Investment
Fund return (%)

W0=18 W0=20 W0=22 W0=25

L0/W0=5.5% L0/W0=5.0% L0/W0=4.54% L0/W0=4.0%

a* c*/W0 a* c*/W0 a* c*/W0 a* c*/W0

m=6 0.6733 0.0607 0.6778 0.0659 0.6815 0.0701 0.6859 0.0752

m=7 0.4898 0.0614 0.4982 0.0666 0.5052 0.0708 0.5135 0.0759
m=8 0.3067 0.0624 0.3191 0.0676 0.3293 0.0718 0.3415 0.0769
m=9 0.1242 0.0638 0.1405 0.0689 0.1538 0.0732 0.1698 0.0782

m=10 x0.0579 0.0655 x0.0378 0.0707 x0.0213 0.0749 x0.0015 0.0799
m=11 x0.2395 0.0676 x0.2156 0.0727 x0.1960 0.0769 x0.1725 0.0819

Note: Assets that are not invested in the ILBF are allocated to Investment Fund with mean
return m and volatility s=20%. The expected return from ILBF is r=5%, with volatility
g=8%. Correlation between ILBF and Investment Fund return is rry=0%. Correlation be-
tween liability and Investment Fund return is rpy=25%.
High (rpr=95%) correlation with spending/liabilities
High (j=3%) volatility of spending/liabilities ; p=4%
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nature of the assumed price dynamics (geometric Brownian motion) and investment

choices. Furthermore, our selection of the minimum ruin criteria, as opposed to a

more economically driven utility maximization criteria is meant to flush out the

following point. Even the most risk averse preferences – i.e. ‘my main goal is to never

run out of money’ – do not necessarily induce a complete allocation to the relatively

safest asset, when the hedging and insurance are not perfect. To some readers this result

might be obvious in an incomplete market, but we believe that it is worth emphasizing

and illustrating in the context of inflation and the cost of living in retirement. There is

no guarantee that an ILBF will hedge personal retirement liabilities. In our opinion,

(a)

(b)

Figure 5. (a) CPI fund allocation as function of W/L ratio:
high, medium and zero correlation. (b) Ruin probability as
function ofW/L ratio: 96%, 40% and 0% liability correlation.
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it should be treated as just another asset class in a liability-driven investment port-

folio strategy, but with a unique set of risk, return and correlation parameters.

5 Final words

It is not widely known outside the specialized world of inflation connoisseurs and

U.S. fed-watchers that inflation as measured for retirees (a.k.a. the elderly) is different

from and mostly higher than the average inflation rate for the aggregate population.

Indeed, in the U.S.A. the CPI has a lesser known relative, called the CPI-E (for the

elderly) in which the sub-component weights are based on the consumption patterns

of Americans above the age of 62. The CPI-E has consistently outpaced the broader

CPI over the last 25 years that it has been measured, partially due to the greater

weight placed on categories such as health-care expenses, long-term care facilities, the

utilization of nursing services, etc. Although housing prices are also allocated greater

weight in the CPI-E, it remains to be seen whether the recent decline in U.S. real

estate will reverse the historical trend of CPI-E exceeding CPI-U (urban) and CPI-W

(wage earner). Likewise, we do not address the persistent concern by some researchers

and commentators that the CPI itself is biased downwards by hedonic adjustments

and imputed rents, which would likely impact the CPI-E as well. One thing is for

certain, there is a growing awareness that personal inflation rates for retirees are quite

different from year-to-year changes in the CPI.

All of this suggests that investments linked to the CPI – such as retail mutual funds

which contain various inflation-linked bonds (ILBF) – might not be a perfect hedge

for individual retirees ’ unique cost of living. In order to focus on this idea in a more

rigorous manner, this paper extends LRM techniques – recently employed by Moore

and Young (2006), Young (2004), Albrecht and Maurer (2002) as well as Browne

(1995) – to investigate the optimal asset allocation between a generic ILBF and a

generic investment fund, for a retiree facing an exogenous liability stream that is

imperfectly correlated to the returns on the CPI-linked fund. Our simple model trades

off the benefits of an imperfect insurance hedge against the risky potential for in-

vestment growth.

Our results suggest that currently available CPI-linked funds – although they cer-

tainly are a large part of the optimal portfolio, especially for risk-averse investors as

argued by Bodie and Clowes (2005) – should in fact be treated as just another asset

class in the broad optimization problem, as opposed to a special or unique category.

Practically speaking, retirees should (obviously) include CPI-linked investments in

their portfolio universe, but not disproportionately so. In other words, it is very

important to remember that inflation-linked assets might not keep up with the lia-

bility’s inflation rate. So, in response to the question, which is the title of this paper,

retirees should both hedge inflation risk and also worry about it.
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Appendix – Detailed derivation and solution

A.1 Derivation of the HJB

The derivation is based on the method in Björk (1998, chapter 14). Assume an

individual of age a at time zero. At any time t the individual aged a+t continues the

optimal asset allocation strategy within the range 0faf1 if they survive until t+h.

On the other hand, if the individual aged a+t dies before time t+h, then the

probability of ruin is zero. Let w(w, l, t) denote the minimum ruin probability, i.e.

w(w, l, t)= min
0fatf1

Pr[t0<tdjWt=w,Lt=l, td>t]: (11)

Therefore,

w(w, l, t)fE [w(Wt+h,Lt+h, t+h)jWt=w,Lt=l ]h pa+t+E [0jWt=w,Lt=l ]hqa+t,

(12)

where the equality holds if and only if the optimal strategy is used. Here the symbols

hpa+t and hqa+t:=1xhpa+t are standard actuarial notation for the probabilities of

surviving and dying between the time period h for an individual aged a+t, given by

hpa=e
x
R h

0
la+sds, (13)

where lt is the instantaneous hazard rate of the force of mortality. Now, let A denote

the operator defined as follows:

Af (w, l, t)=ft+ arw+(1xa)mwxl½ � fw

+
1

2
(ag)2+[(1xa)s]2+2a(1xa)rrygs

� �
w2fww

+plfl+
1

2
(jl)2fll+[arprg+(1xa)rpys]jwlfwl,

(14)

where ft, fw, fl, etc. denote derivatives with respect to time, wealth and liability, re-

spectively.
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Using Ito’s lemma on the function w, we have

w(Wt+h,Lt+h, t+h)=w(w, l, t)+
Zt+h

t

Aw(ws, ls, s)ds

+
Zt+h

t

ww(ws, ls, s)[agwsdB
r
s+(1xa)swsdB

y
s ]

+
Zt+h

t

wl(ws, ls, s)jldB
p
s :

(15)

Combining equations (12), (14) and (15), we obtain

w(w, l, t)fhpa+tE
w, l, t w(w, l, t)+

Zt+h

t

Aw(Ws,Ls, s)ds

2
4

3
5, (16)

or

w(w, l, t)hqa+tfhpa+tE
w, l, t

Zt+h

t

Aw(Ws,Ls, s)ds

2
4

3
5: (17)

Taking the limit of hp0 and using limhp0h
x1

hqa+t=la+t, we obtain

w(w, l, t)la+tfAw(w, l, t) (18)

and the equality holds when the optimal strategy is used, which is either given by the

first-order condition or the boundary values a=0 or 1. Thus, we obtain the HJB

equation

w(w, l, t)la+t= min
0faf1

{Aw(w, l, t)}: (19)

The boundary conditions are

w(O, l, t)=0, w(0, l, t)=1, w(w, 0, t)=0, w(w,O, t)=1: (20)

Assuming an infinite time horizon, the terminal condition is

w(w, l,O)=0: (21)

When the mortality rate la+t is a constant, the infinite time horizon case leads to a

time-independent version of (19) by dropping the term wt. However, this is not the

case (for realistic biological mortality), where the variable la+t is time dependent and

the solution w is therefore also time dependent. In this case, time is equivalent to age,

and we can rewrite the HJB equation (19) using age a as the time variable

law=wa+ min
0faf1

H, (22)
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where

H :¼ arw+(1xa)mwxl½ �ww+plwl

+
1

2
(ag)2+[(1xa)s]2+2a(1xa)rrygs

� �
w2www

+
1

2
(jl)2wll+[arprg+(1xa)rpys]jwlwwl:

(23)

The boundary conditions are still :

w(O, l, a)=0, w(0, l, a)=1, w(w, 0, a)=0, w(w,O, a)=1, w(w, l,O)=0:

(24)

A.2 Solution procedure

By introducing a similarity variable x=w/l, which is the ratio of wealth to the

liabilities, it can be shown that the now two-dimensional equation y(x, a)=w(w, l, a)

satisfies

lay=ya+ min
0faf1

H, (25)

where

H :¼ 1

2
a2g2+(1xa)2s2+2a(1xa)rrygs
� �

+j2x2 arprg+(1xa)rpys
� �

j
� �

x2yxx

+ arx+(1xa)mxx1xpx½ �+j2xx arprg+(1xa)rpys
� �

jx
� �

yx,

(26)

or

lay=ya+H*, (27)

where

H* :¼ 1

2
a*2g2+(1xa*)2s2+2a*(1xa*)rrygs
� �

+j2x2 a*rprg+(1xa*)rpys
� �

j
� �

x2yxx

+ a*rx+(1xa*)mxx1xpx½ �+j2xx a*rprg+(1xa*)rpys
� �

jx
� �

yx:

(28)

The boundary conditions are

y(0, a)=1, y(O, a)=0, y(x,O)=0: (29)

To determine a*, we first apply the first-order condition Ha=0, which yields

a*=x
(rpysxrprg)j+rxm

g2+s2x2rrygs

yx

xyxx

x
s(rrygxs)+(rpysxrprg)j

g2+s2x2rrygs
: (30)

As we will demonstrate in the appendix, under certain conditions, y(x, a) will not be a

strictly convex or concave function of x. Thus, the value of a* cannot be determined
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only by the first-order optimality condition. Since

Haa=(g2+s2x2rrygs)
2x2yxx (31)

and y is not convex, Haa can change signs. Therefore, we need both the first- and

second-order conditions to determine the value of a* as follows:
’ IfHaa>0 and a* given by (30) satisfies 0fa*f1, then that is the value for a*.
’ If Haa>0 and a* given by (30) satisfies a*>1, then a*=1.
’ If Haa>0 and a* given by (30) satisfies a*<0, then a*=0.
’ If Haaf0, we need to compare H at a=0 and a=1 and choose the a* value

that gives the smaller H.

In order to solve equation (27) numerically, we need to truncate the domain in x as

well as y and replace the boundary conditions in (29) by

y(0, a)=1, y(xmax, a)=0, y(x, amax)=0, (32)

where xmax and amax are relatively large numbers. The computational results pre-

sented in this paper are obtained by choosing xmax=200 and amax=125, based on the

observation that further increasing the size of the domain produces almost identical

solutions.

There are two possible ways of solving (27), one by discretizing the time derivative

ya explicitly, whereas the other by using an implicitly method. In both cases, we

discretize a as an=a0+nda for n=0, 1, …, N, where da=(amaxxa0)/N, a0 is the cur-

rent age of the retiree. Furthermore, we set up a grid in x, using xj=jdx for j=0,

1, …, J, where dx=xmax/J. Let yj
(n) be an approximation of y(xj, an), in the explicit

method, we use

ya(xj, an) �
y(n+1)

j xy(n)
j

da
, (33)

while

ya(xj, an+1) �
y(n+1)

j xy(n)
j

da
(34)

is used for the implicit method.

A.2.1 Explicit method

In this case, equation (27) is approximated by

y(n+1)
j =y(n)

j +daF(y(n)
j ), (35)

F(y(n)
j )=xlay

(n)
j

+
1

2
a*, j2g2+(1xa*, j)2s2+2a*, j(1xa*, j)rrygs
� ��

+j2x2 a*, jrprg+(1xa*, j)rpys
� �

j
�
x2y(n)

xx(xj)

+ a*, jrx+(1xa*, j)mxjx1xpxj
� �

+j2xj
�

x a*, jrprg+(1xa*, j)rpys
� �

jxj
�
y(n)

x (xj),

(36)
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where

y(n)
x (xj)=

y(n)
j+1xy(n)

jx1

2dx
, y(n)

xx(xj)=
y(n)

j+1+y(n)
jx1x2y(n)

j

dx2
: (37)

In general, the value of a*, j can be determined using both the first- and second-order

optimality conditions, as described earlier. However, owing to the explicit nature of

the method, we can use a simpler approach as follows.

Let yj
(n,*) denote the solution obtained using (36) and the first-order condition

(30), yj
(n, 0) and yj

(n, 1) the solution of (36) using a=0 or a=1. We choose the final

solution as

y(n)
j =min y(n,

j
*),y

(n, 0)
j ,y

(n, 1)
j

n o
: (38)

This method is conceptually simple and easy to implement. However, it is not efficient

as small da has to be used because of stability constraint associated with the explicit

method.

A.2.2 Implicit method

Alternatively, we can use an implicit method by approximating equation (27) as

y(n+1)
j =y(n)

j +daF(y(n+1)
j ), (39)

F(y(n+1)
j )=xlay

(n+1)
j +

1

2
a*, j2g2+(1xa*, j)2s2+2a*, j(1xa*, j)rrygs
� ��

+j2x2 a*, jrprg+(1xa*, j)rpys
� �

j
�
x2
jy

(n+1)
xx (xj)

+ a*, jrxj+(1xa*)mxjx1xpxj
� �

+j2xj
�

x a*, jrprg+(1xa*, j)rpys
� �

jxj
�
y(n+1)

x (xj),

(40)

where

y(n+1)
x (xj)=

y(n+1)
j+1 xy(n+1)

jx1

2dx
, y(n+1)

xx (xj)=
y(n+1)

j+1 +y(n+1)
jx1 x2y(n+1)

j

dx2
: (41)

The simple approach used in the explicit method is not applicable here. Instead, we

have to use both the first and second optimality condition and apply the procedure

described earlier to determine a*, j. In a fully implicit method, we need to apply the

iterative method to find the solution owing to the non-linear nature of the problem.

In this paper, we use a semi-implicit version by computing a*, j using yj
(n) instead of

yj
(n+1). By comparison, this semi-implicit method is simpler than the fully implicit

one and much more efficient than the explicit method since a relatively large da can be

used for the computation.

Finally, as we alluded to earlier, when the investment portfolio consists of a risk-

free asset and consumption rate is a constant, it can be shown that the ruin can be

avoided under certain conditions, and the probability of ruin, when it is not zero, is a

convex function of the wealth, as shown by Young (2004). However, when the port-

folio consists of only risky assets, it may not be possible to eliminate ruin completely.
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Furthermore, the probability of ruin may not be a convex function of the wealth; see

Huang et al. (2004) for the case with one risky asset and a constant rate of con-

sumption. The situation considered in this paper is more complicated. When the

liability and the risky assets are completely correlated, it is possible to avoid ruin

when the wealth level relative to liability is sufficiently high. On the other hand, when

the risky assets and liability are not perfectly correlated, the situation is not as simple.

In order to see this, we restrict ourselves to the case when the age if relatively small,

so that both the mortality rate and the change of ruin probability with time/age is

small. In other words, the Hamiltonian H*B0 in equation (28). When x is small,

from equation (28), it can be seen that parameter of the second-order derivative

remains positive while that of first derivative is approximately x1. Since yx<0, we

must have yxx<0, i.e., y is convex for small x. For large x, on the other hand, the

coefficient of yx is approximately

a*r+(1xa*)m+j2x a*rprg+(1xa*)rpys
� �

jxp
� �

x,

which could be positive or negative. When

p+[a*rprg+(1xa*)rpys]j<a*r+(1xa*)m+j2

for any 0fa*f1, the coefficient of yx is positive. Since the coefficient of yxx is

also positive, yxx must be positive, i.e., y is now a concave function of x (scaled

wealth).
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