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Wages and Salary in Continuous Time

x years old: no income

I years old: age at which you start your working life

R years old: retirement age (exogenous variable)

wx : inflation-adjusted annual wage (current wage)

wx :=


0; 0 ≤ x ≤ I Study Period

wI e
g (x−I ); I < x ≤ R Working Stage
0; R < x ≤ D Retirement Years

(1)

wI : real (inflation-adjusted) wage rate in the first year of working

g : real (inflation-adjusted) rate at which your wages grow until
retirement

Note: gt is time-dependent or even random

D years old: death age (exogenous variable)

assume that for x ∈ (R, D) we have zero wage
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Human Capital Mathematical Expression

not working (x < I ):

Hx =
∫ D

x
wte

−v (t−x)dt x ≤ I

=
∫ R

I
wI e

g (t−I )e−v (t−x)dt x < I (2)

= wI e
vx−gI

∫ R

I
e(g−v )tdt x < I (3)

= wI e
(vx−gI )

(
e(g−v )R − e(g−v )I

g − v

)
x < I g 6= v (4)

= wI e
v (x−I )

(
e(g−v )(R−I ) − 1

g − v

)
x < I g 6= v (5)

limg→v Hx = wI e
v (x−I )(R − I ) by L’Hopital Rule
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Human Capital Values in Continuous Time

using the continuous-time formulation, we value (discount) the
cash-flows generated by the human wage process

Human capital

1 still in school (not working):

Hx =
∫ D

x
wte−v (t−x)dt x ≤ I (6)

2 working already

Hx =
∫ D

x
wxeg (t−x)e−v (t−x)dt x ≥ I (7)

v : valuation rate (discount rate)
wtdt: instantaneous wage earned at t
(t − x): discounts wage earned at t to present age x
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cont’d

working (x ≥ I )

Hx =
∫ D

x
wxeg (t−x)e−v (t−x)dt x ≥ I

= wx

(
e(g−v )(R−x) − 1

g − v

)
x ≥ I , g 6= v (7)

= wI e
g (x−I )

(
e(g−v )(R−x) − 1

g − v

)
using wI (8)

limg→v Hx = wx (R − x) by L’Hopital Rule
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Human Capital Mathematical Expression (summary)

not working (x < I )

Hx = wI e
v (x−I )

(
e(g−v )(R−I ) − 1

g − v

)
x < I g 6= v (6)

working (x ≥ I )

Hx = wI e
g (x−I )

(
e(g−v )(R−x) − 1

g − v

)
x ≥ I g 6= v (9)

Note:(g − v) becomes a real (inflation-adjusted) quantity–we don’t
need to make guess about future inflation rates
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Does HC Grow or Shrink over Time?

Human capital might increase with x (i.e.Hx+1 > Hx)⇐⇒your
human capital tomorrow (Hx+1) might be worth more than it is
today (Hx)

Reason: Hx and Hx+1 are not quite comparable and represent values
and cash-flows at different points in time

age at which HC achieves maximum:

dHx

dx
= 0⇒ x∗ = R − ln(g/v)

g − v
g 6= v

(a) lim
g→v

x∗ ⇒ x∗ = R − 1

v

(b) lim
g→0

x∗ → −∞ consistent decline of HC

(c) g > 0⇐⇒ HC declines eventually

Take-away: human capital in tomorrow’s dollars might be larger than
the value of human capital in today’s dollars
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Implicit Liability in Continuous Time

to get net-human capital, we must subtract off the value of implicit
liabilities from human capital

iLx = bx

(
e(g̃−v )(D−x) − 1

g̃ − v

)
(13)

bx –estimated cost

g̃ –growth rate

v–discount rate
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Consumption Smoothing: A Second Look

we derive an optimal consumption function ct by assuming we want
to spread human and financial capital evenly over the lifecycle

later we do this formally by assuming we maximize the utility of
consumption (results are identical when valuation rates are constant)

{ct ; x ≤ t ≤ D}: any of the infinite number of consumption plans to
be implemented over the remaining lifecycle
c∗t : optimal consumption plan

{st ; x ≤ t ≤ R}: any of the infinite number of savings/investment
plans to be implemented over the working years
s∗t : optimal savings plan

ignoring implicit liabilities: s∗t = wt − c∗t

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 9 / 1



Consumption Smoothing: A Second Look

we derive an optimal consumption function ct by assuming we want
to spread human and financial capital evenly over the lifecycle

later we do this formally by assuming we maximize the utility of
consumption (results are identical when valuation rates are constant)

{ct ; x ≤ t ≤ D}: any of the infinite number of consumption plans to
be implemented over the remaining lifecycle
c∗t : optimal consumption plan

{st ; x ≤ t ≤ R}: any of the infinite number of savings/investment
plans to be implemented over the working years
s∗t : optimal savings plan

ignoring implicit liabilities: s∗t = wt − c∗t

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 9 / 1



Consumption Smoothing: A Second Look

we derive an optimal consumption function ct by assuming we want
to spread human and financial capital evenly over the lifecycle

later we do this formally by assuming we maximize the utility of
consumption (results are identical when valuation rates are constant)

{ct ; x ≤ t ≤ D}: any of the infinite number of consumption plans to
be implemented over the remaining lifecycle
c∗t : optimal consumption plan

{st ; x ≤ t ≤ R}: any of the infinite number of savings/investment
plans to be implemented over the working years
s∗t : optimal savings plan

ignoring implicit liabilities: s∗t = wt − c∗t

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 9 / 1



Consumption Smoothing: A Second Look

we derive an optimal consumption function ct by assuming we want
to spread human and financial capital evenly over the lifecycle

later we do this formally by assuming we maximize the utility of
consumption (results are identical when valuation rates are constant)

{ct ; x ≤ t ≤ D}: any of the infinite number of consumption plans to
be implemented over the remaining lifecycle
c∗t : optimal consumption plan

{st ; x ≤ t ≤ R}: any of the infinite number of savings/investment
plans to be implemented over the working years
s∗t : optimal savings plan

ignoring implicit liabilities: s∗t = wt − c∗t

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 9 / 1



Consumption Smoothing: A Second Look

we derive an optimal consumption function ct by assuming we want
to spread human and financial capital evenly over the lifecycle

later we do this formally by assuming we maximize the utility of
consumption (results are identical when valuation rates are constant)

{ct ; x ≤ t ≤ D}: any of the infinite number of consumption plans to
be implemented over the remaining lifecycle
c∗t : optimal consumption plan

{st ; x ≤ t ≤ R}: any of the infinite number of savings/investment
plans to be implemented over the working years
s∗t : optimal savings plan

ignoring implicit liabilities: s∗t = wt − c∗t

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 9 / 1



Lifetime Budget Constraint

Wx︸︷︷︸
PV of current net worth

−
∫ D

x
c∗t e−v (t−x)dt︸ ︷︷ ︸

discount optimal consumption

= 0 (15)

where c∗t = c∗x ek(t−x)

c∗x : optimal consumption at current age (assume constant)

k% p.a.: consumption change

Wx − c∗x

∫ D

x
ek(t−x)e−v (t−x)dt = 0 (16)

Wx − c∗x

(
e(k−v )(D−x) − 1

k − v

)
= 0 (17)

when k = v the expression collapses to wx − c∗x (D − x) = 0
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Current Optimal Consumption Rate

The optimal consumption rate:

c∗x =
Wx (k − v)

e(k−v )(D−x) − 1
k 6= v (18)

and

lim
k→v

c∗x =
Wx

D − x
(19)

EXAMPLE
x = 35, Fx = $100, 000 (financial capital), w35 = 50, 000 p.a.,
g = 6% p.a., R = 65, D = 95, b35 = $20, 000 (minimum subsistent
level of consumption), g̃ = 2%, v = 5%⇒ H35 = $1, 749, 294,
iL35 = $556, 467, W35 = $1, 292, 827

1 k = 4%⇒ c∗35 = $28, 654
2 if k increases to 5.5%⇒ c∗35 = $18, 476⇒ c∗36 = $19, 521
3 k = −2% (impatient and want to spend

money)⇒ c∗35 = $91, 876⇒ c∗36 = $50, 422
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Effect of Wage Growth and Valuation Rates

g ↑

R ↑

wx ↑

Hx ↑,Wx ↑, c∗x ↑ and continues increasing at k%

v ↑

v ↓

Hx ↓ (Wx ↓) and iLx ↓ (Wx ↑)⇒ c∗x ↓ (HC pull)

cx ↓

Hx ↑ (Wx ↑) and iLx ↑ (Wx ↓)⇒ c∗x ↑ (HC pull)

cx ↑

Note: g and k determine which effect dominates
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Calculus of Variation

Goal: to solve the optimal consumption problem more rigorously (i.e.
without guessing the functional form of the optimal consumption
function)

we start with the generic function:

J [z∗t ] = max
zt

J [zt ] where J [zt ] :=
∫ b

a
φ(t, zt , żt)dt (21)

Task: to choose a particular path z∗t from a to b so that the integral
reaches its maximum value

Method: by Calculus of Variation (Euler - Lagrange)
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Optimal Path

1 add perturbation δzt to the optimal path z∗t (if it exists)⇔ δzt = hηt

2

δJ := J [z∗t + δzt ]− J [z∗t ] (23)

where

J [z∗t + δzt ] =
∫ b

a
φ(t, z∗t + δzt , ż∗t + δ̇z t)dt (24)

φ(t, z∗t + δzt , ż∗t + δ̇z t) =
Taylor φ(t, z∗t , ż∗t ) + φ2(t, z∗t , ż∗t )δzt

+ φ3(t, z∗t , ż∗t )δ̇z t + h.o.t. (25)

where 2, 3 denote partial derivative w.r.t. 2nd and 3rd variables

3

J [z∗t + δzt ]− J [z∗t ] =
∫ b

a
φ2(t, z∗t , ż∗t )δztdt

+
{

φ3(t, z∗t , ż∗t )δ̇z t + h.o.t.
}

dt (26)
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φ3(t, z∗t , ż∗t )δ̇z t + h.o.t.
}

dt (26)

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 14 / 1



Optimal Path

1 add perturbation δzt to the optimal path z∗t (if it exists)⇔ δzt = hηt

2

δJ := J [z∗t + δzt ]− J [z∗t ] (23)

where

J [z∗t + δzt ] =
∫ b

a
φ(t, z∗t + δzt , ż∗t + δ̇z t)dt (24)
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cont’d

δJ =IBP
∫ b

a

{[
φ2(t, z∗t , ż∗t )−

d

dt
φ3(t, z∗t , ż∗t )

]
δzt + h.o.t.

}
dt

+ φ3(t, z∗t , ż∗t )δzt |zbza (27)

=
∫ b

a

{[
φ2(t, z∗t , ż∗t )−

d

dt
φ3(t, z∗t , ż∗t )

]
δzt + h.o.t.

}
dt

since za and zb are given and δza = δzb = 0

4 by definition (max)∫ b

a

{[
φ2(t, z∗t , ż∗t )−

d

dt
φ3(t, z∗t , ż∗t )

]
δzt + h.o.t.

}
dt ≤ 0 (28)

5 necessary condition for optimality is given by the Euler-Lagrange
equation

φ2(t, z∗t , ż∗t )−
d

dt
φ3(t, z∗t , ż∗t ) = 0 (29)
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φ3(t, z∗t , ż∗t ) = 0 (29)

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 15 / 1



cont’d

δJ =IBP
∫ b

a

{[
φ2(t, z∗t , ż∗t )−
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d

dt
φ3(t, z∗t , ż∗t )
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Smooth Consumption: A Final Look

Question: What is the optimal consumption rate which will carry you
from now (x) until the time of death (D)?

in the uility maximizing framework, we solve the optimal consumption
problem

max
ct

E

[∫ D̄

0
e−ρtu(ct)dt

]
(30)

where ρ (a new variable) is called the subjective discount rate

we have the budget equation:

Ḟt = vFt + wt − ct given F0 and FD̄ = 0 (31)

assume a relative risk-aversion (CRRA) utility function

u(ct) =

{
c
1−γ
t −1
1−γ γ 6= 1

ln(ct) γ = 1
(32)
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Solution of Optimal Consumption Problem

use Calculus of Variations technique for the function:

φ(t, zt , żt) = e−ρtu(wt + vzt − żt) (33)

using equation (29), we obtain the ODE

F̈t − (k + v)Ḟt + kvFt + kwt − ẇt = 0 for t ≤ R̄ (34)

and
F̈t − (k + v)Ḟt + kvFt = 0 for t > R̄ (35)

with F0 given, FD̄ = 0 and k = (v − ρ)γ−1.

Note: for γ 6= 1 we will actually use u(ct) = c
1−γ
t /(1− γ) for

simplicity as it does not affect the optimal solution
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cont’d

the optimal consumption rate:

d

dt
log c∗t = k; as c∗t = c∗0 exp(kt)

to obtain c∗0 , we integrate the budget equation from t = 0 to t = D̄
and assume we already started earning wages:

Ḟt = vFt + w0egt1{t<R̄} − c∗0 ekt (38)

where R̄ = R − x (time to retirement) and D̄ = D − x (time to
death)
we get:

F0 = −
w0

g − v

(
1− e(g−v )R̄

)
+

c∗0
k − v

(
1− e(k−v )D̄

)
(37)

Assumptions:
a) borrowing rate = lending rate =constant
b) no pension after retirement
c) no mortality risk
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Life and Death in Continuous Time

basic concepts needed for modeling over uncertain lifetimes

conditional probability of surviving t more years:

tpx := 1− Fx (t) = Pr[Tx > t]

where Tx is a r.v. representing the remaining lifetime for individual
aged x
conditional probability of dying before or at age x + t ⇔ cumulative
density function (CDF) of Tx :

Fx (t) := 1− tpx = Pr[Tx ≤ t] (39)

Fx (t) =
∫ t

0
fx (s)ds (40)

where fx (t) is the probability density function (PDF) of r.v. Tx

as long as tpx is constant or decreasing w.r.t. t

tpx = e−
∫ x+t
x λsds (41)

λs : instantaneous rate of death at age s
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From Fx → fx(t)→ λx+t and back again

we start with:

tpx = e−
∫ x+t
x λsds (41)

through the change of variables u = s − x :

tpx = e−
∫ t
0 λx+udu (42)

we take the derivative of equation (42):

∂

∂t
(tpx ) = −(tpx )λx+t

we obtain the density function:

fx (t) =
∂

∂t
(1−t px ) = (1− Fx (t))λx+t (43)
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cont’d

use equation (43) to represent the Instant Force of Mortality
(IFM):

λx+t =
fx (t)

1− Fx (t)
t ≥ 0 (44)

which leads to:

Fx (t) = 1− fx (t)

λx+t
(45)

and
fx (t) = tpx λx+t (46)
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Concept of Moments

Tx is a continuous r.v.

First moment of its distribution:

E [Tx ] =
∫ ∞

0
tfx (t)dt (47)

or equivalently:

E [Tx ] =
∫ ∞

0
(tpx )dt (48)

Second moment (square mean) of its distribution:

E [T2
x ] =

∫ ∞

0
t2fx (t)d (49)

Standard deviation

D [Tx ] =
√

E [T2
x ]− E 2[Tx ] (50)
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Exponential Law of Mortality

this law assumes IFM satisfies:

λx+t = λ

from equation (41):

tpx = e−
∫ x+t
x λsds = e−λt (51)

the CDF and PDF are:

Fx (t) = 1− e−λt (52)

fx (t) = λe−λt (53)

the expected remaining lifetime (ERL):

E [Tx ] =
∫ ∞

0
tλe−λtdt =

1

λ
(54)

the median remaining lifetime (MRL):

1

2
= e−λM [Tx ] ⇐⇒ M [Tx ] = (ln 2)λ−1 < λ−1 (55)
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Gompertz-Makeham Law of Mortality

this law assumes the IFM satisfies

λx = λ +
1

b
e(x−m)/b t ≥ 0 (56)

called Gompertz-Makeham if λ > 0 and Gompertz if λ = 0
m: selected median lifespan
b: dispersion coefficient
λ: component of death rate attributable to accidents
1
b e(x−m)/b: reflects natural death causes (increases with x and → ∞
as t → ∞)
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cont’d

from equation (41):

tpx = e−
∫ x+t
x (λ+ 1

b e
(s−m)/b)ds = e−λt+b(λx−λ)(1−et/b); Fx (t) = 1− tpx

we recover the PDF for the remaining lifetime r.v. (fx (t) = F ′x (t)):

fx (t) =

(
λ +

1

b
e(x+t−m)/b

)
e−λt+b(λx−λ)(1−et/b) (57)

ERL under GM law of mortality is:

E [Tx ] =
∫ ∞

0
e−λt+b(λx−λ)(1−et/b)dt =

bΓ(−λb, b(λx − λ))

e(m−x)λ+b(λ−λx )
(58)

where

Γ(a, c) =
∫ ∞

c
e−tta−1dt (59)
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Pension Annuity

assume insurance company pays $1 per year for the rest of the
person’s life

the stochastic value of the payment quantity is:

ax =
∫ Tx

0
e−vtdt =

∫ ∞

0
e−vt1{Tx≥t}dt (60)

where v is the effective valuation rate p.a. and

1{Tx≥t} =

{
1 when Tx ≥ t
0 when Tx < t

the expected value of r.v. ax (immediate annuity factor) is:

āx = E

[∫ Tx

0
e−vtdt

]
=
∫ ∞

0
e−vt tpx dt =

∫ ∞

0
e−(vt+

∫ t
0 λx+sds)dt

(61)
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Annuities: Examples

1 Annuities: Exponential Lifetime

Tx is exponentially distributed ⇒t px = e−λt and:

āx =
∫ ∞

0
e−(v+λ)tdt =

1

v + λ
(62)

2 Annuities: GM Mortality

we have λx = λ + 1
b e(x−m)/b, tpx = e−λt+b(λx−λ)(1−et/b) and:

āx = eb(λx−λ)
∫ ∞

0
e−(λ+v )t−b(λx−λ)et/b

dt

= beb(λx−λ)
∫ ∞

1
s−(λ+v )b−1e−b(λx−λ)sds

=
b(bλx − λ)(λ+v )b+1

b(λx − λ)
eb(λx−λ)

∫ ∞

b(λx−λ)
w−(λ+v )b−1e−wdw

= bΓ
[
−(λ + v)b, e(

x−m
b )
]

e
−
[
(m−x)(λ+v )−e(

x−m
b )

]
(67)
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cont’d

EXAMPLE 1: GM mortality, λ = 0, m = 86.34, b = 9.5, v = 4%
and x = 65, 75, 85⇒ ā65 = 12.454, ā75 = 8.718, ā85 = 5.234

the older the annuitant at the age of annuitization, the lower is the
cost (and hence value) of each dollar of lifetime income
a pension annuity that pays $65/mo ($7, 800/yr) has a value of
(12.454)(7, 800) = $97, 141 at age 65

EXAMPLE 2: GM mortality, λ = 0.01, m = 86.34, b = 9.5,
v = 4% and x = 65, 75, 85⇒ ā65 = 11.394, ā75 = 8.181, ā85 = 5.026

EXAMPLE 3: GM mortality, λ = 0, m = 86.34, b = 9.5, v = 6%
and x = 65, 75, 85⇒ ā65 = 10.474, ā75 = 7.696, ā85 = 4.832

the higher the interest rate, the lower the value of a (mortality free)
fixed income bond

EXAMPLE 4: GM mortality, λ = 0, m = 90, b = 9.5, v = 4% and
x = 65, 75, 85⇒ ā65 = 13.753, ā75 = 10.094, ā85 = 6.434

the value of the annuity increases due to a longer lifespan
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cont’d

the most general (analytic) annuity factor under GM:

āx (v , T1, T2, m, b) :=
∫ T2

T1

e−vt(tpx )dt =
∫ T2−T1

0
e−

∫ s
0 (v+λx+t )dtds

(70)

if you replace (tpx ) or λx+t , with the relevant Gompertz-Makeham
version:

āx (v , T1, T2, λ, m, b) =
b

η
Γ
[
−(λ + v)b, e

(
x−m+T1

b

)]
− b

η
Γ
[
−(λ + v)b, e

(
x−m+T2

b

)]
(71)

where

η = exp

[
(m− x)(λ + v)− exp

(
x −m

b

)]
(72)
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The Problem of Retirement Income

Goal: to derive the optimal consumption and savings policy once you
no longer have any human capital left and must live off your financial
capital and pension income

the classical lifecycle model (LCM):

max
ct

E

[∫ D̄

0
e−ρtu(ct)1{t≤Tx}dt

]
(73)

where Tx ≤ D̄ is the remaining lifetime satisfying Pr[Tx > t] =t px

we re-write the value function:

max
ct

∫ D̄

0
e−ρtu(ct)E [1{t≤Tx}]dt = max

ct

∫ D̄

0
e−ρtu(ct)(tpx )dt

since we assume independence between optimal consumption c∗t and
the lifetime indicator function 1{t≤Tx}
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cont’d

the wealth (budget) constraint:

Ḟt = v(t, Ft)Ft + π0 − ct with B.C. F0 ≥ 0, FD̄ = 0 (74)

where π0 is the constant income rate (pension annuity)

the valuation rate vt = v(t, F ) is a general interest function defined
by:

vt =

{
v + ξλx+t Ft ≥ 0,
v̂ + λx+t , Ft < 0,

(75)

which imposes a no-borrowing constraint when v̂ = ∞
Note: our model allows the ability to invest in actuarial notes which
are instantaneous life annuities i.e. you pool your money with other
people of the exact same age and the survivors gain the interest of
the deceased
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Euler-Lagrange Equation

problem set-up in standard form:

max
ct

∫ D̄

0
φ(t, Ft , Ḟt)dt (76)

where φ(t, Ft , Ḟt) = e−ρtu(vtFt − Ḟt + π0) tpx

the Euler-Lagrange equation:

d

dt
(vtFt − Ḟt) = kt(π0 + vtFt − Ḟt) (77)

with given F0 and FD̄ = 0, where kt = (vt − ρ− λx+t)γ−1

when v(t, Ft) = v during the entire interval (0, D̄) and for Ft 6= 0,
the optimal trajectory Ft must satisfy:

F̈t − (kt + v)Ḟt + vktFt = ktπ0 (78)

once Ft is found, we use the budget equation (74) to retrieve the
optimal consumption rate function
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φ(t, Ft , Ḟt)dt (76)
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Wealth Depletion

Question: When wealth is depleted Ft = 0, is it optimal to remain at
zero wealth or should Ft become negative (debt)?

Answer: We apply Calculus of Variations to the objective function at
Ft = 0.

let J =
∫ D̄
0 φ(t, Ft , Ḟt)dt and we have:

δJ =
∫ D̄

0

(
φFt −

d

dt
φḞt

)
δFtdt =

∫ D̄

0

(
vtζt + ζ̇t

)
δFtdt

with φFt = vtζt , φḞt
= −ζt and

ζt = exp

(
−
∫ t

0
(ρ + λx+s)ds

)
u′(ct)

= exp

(
−
∫ t

0
(ρ + λx+s)ds

)
c
−γ
t (79)

note that vt (defined in equation (75)) is not smooth at
Ft = 0⇒ δFt is one-sided when Ft = 0
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cont’d

J reaches maximum ⇔ δJ ≤ 0 for both δFt > 0 and δFt < 0, hence:

ζ̇t + vtζt

{
≥ 0, δFt < 0
≤ 0, δFt > 0

(80)

from equation (79), we know ζt > 0 and we obtain:

d

dt
log ζt + vt

{
≥ 0, δFt < 0
≤ 0, δFt > 0

(81)

since log ζt = −
∫ t
0 (ρ + λx+s)ds − γ log ct :

d

dt
log ζt = −(ρ + λx+t)− γ

d

dt
log ct (82)

combining equ’s (81) and (82):

d

dt
log ct

{
≤ kt , δFt < 0
≥ kt , δFt > 0

(84)
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cont’d

from equ’s (75) , (84) and Ft = 0 (i.e. ct = π0) we get the
optimality condition:

v − ρ + (ξ − 1)λx+t

γ
≤ 0 ≤ v̂ − ρ

γ
(85)

Note:

when ξ < 1, the first inequality becomes valid over time (since λx+t is
increasing in time)
validity of the second inequality depends on how large the borrowing
rate, v̂ is relative to the discount rate ρ
once the wealth is depleted, it stays depleted (due to λx+t increasing)
when ξ = 1, wealth depletion is optimal if v ≤ ρ ≤ v̂
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once the wealth is depleted, it stays depleted (due to λx+t increasing)
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Classifying Retirement Trajectories

four wealth trajectories Ft emerge from the optimization model
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Figure 13.1. Four Possible Trajectories
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cont’d

1 regime I and II
the wealth trajectory Ft begins at F0 > 0 and might increase initially
(I) or decline over the entire range (II)
wealth Ft depleted (only) at t = D

2 regime III

Ft declines (rapidly) and hits zero prior to D
we call this wealth depletion time (WDT) denoted by τ
implies a consumption rate higher than I and II
once wealth is depleted, the trajectory stays at Ft = 0 for (τ, D̄)
does not allow for positive Ḟt ⇔ investment wealth will always decline
(or stay constant)

3 regime IV

wealth may or may not be depleted prior to t = D̄
the function Ft can take negative values
Ft can reach a minimum value and then increases to hit zero again at
τ2 ≤ D̄ (the loan depletion time (LDT))
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Economic Cases for the Observed Trajectories

Description Parameters π0 = 0 π0 > 0

Relatively Patient: 0 ≤ ρ < v 1A = [I, II] 1B = [I,II,III]

Neutral Patience: ρ = v < v̂ 2A = [II] 2B = [II,III]

Relatively Impatient: v < ρ < v̂ 3A = [II] 3B = [II,III]

Extremely Impatient: v < v̂ ≤ ρ 4A = [II] 4B = [IV]

Case 1A and B: situation in which optimal consumption rate would
increase over time in the absence of longevity risk

Case 2A and B: would theoretically lead to a constant consumption
profile over time were it not for the longevity risk (so we have
declining consumption profile over time)

Case 3A and B: results in a more rapidly declining consumption rate
compared to case 2A and 2B

Case 4A and B: retiree’s extreme impatience, results in a very rapid
and steep decline of the consumption rate
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Explicit Solution: Exponential Remaining Lifetime

let λx+t = λ and v(t, Ft) = v

solve the ODE by the method of undetermined coefficients:

F̈t + (k − v) Ḟt − vkFt = kπ0 where k = (λ + ρ− v)/γ (86)

the general solution is:

Ft = K1e−kt + K2evt − π0

v
(87)

the solution implies that the optimal consumption function is:

c∗t = vFt − Ḟt + π0 = (v + k)K1e−kt (88)

using the B.C.’s F0 = M > 0 and FD̄ = 0, we get:

K1 = (M + π0/v)

(
1 +

e−kD̄

evD̄ − e−kD̄

)
−
(

π0/v

evD̄ − e−kD̄

)
(91)

K2 =
π0/v − (M + π0/v)e−kD̄

evD̄ − e−kD̄
(92)

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 39 / 1



Explicit Solution: Exponential Remaining Lifetime

let λx+t = λ and v(t, Ft) = v
solve the ODE by the method of undetermined coefficients:
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F̈t + (k − v) Ḟt − vkFt = kπ0 where k = (λ + ρ− v)/γ (86)

the general solution is:

Ft = K1e−kt + K2evt − π0

v
(87)

the solution implies that the optimal consumption function is:
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Examples: Exponential Remaining Lifetime

EXAMPLE 1
ρ = 5%, γ = 4, λ = 8% (equivalent to a life expectancy of 12.5 yrs),
v = 4%, pension income π0 = $1, F0 = M = 10, D̄ = 50 yrs,
k = 0.0225, K1 = 33.069594 and K2 = 1. 9304055

wealth trajectory is convex and hits zero before t = 50, at τ = 21.313

Ft = (33.069594)e−(0.0225)t + (1. 9304055)e(0.04)t − 25 (93)

the optimal consumption rate is:

c∗t = (0.04 + 0.0225)(33.069594)e−(0.025)t = (2.0668496)e−(0.025)t

(94)

EXAMPLE 2
changing only ρ = 3% and λ = 0.5%

Ft is concave and does not hit zero before t = 50

Ft = (36.938048)e(0.00125)t − (1.9380483)e(0.04)t − 25 (95)
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Explicit Solution: Gompertz Mortality

for Gompertz law of mortality, the survival probability:

(tpx ) = exp
{

bλ0(1− et/b)
}

(96)

where λ0 = exp((x −m)/b)/b and x denotes the age at time 0

from the budget equation (74), we have:

ct = vFt − Ḟt + π0 (97)

ċt = vḞt − F̈t (98)

after rearranging equation (78):

F̈t − vḞt + kt(vFt − Ḟt) = −ktπ0 (99)
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CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 41 / 1



Explicit Solution: Gompertz Mortality

for Gompertz law of mortality, the survival probability:

(tpx ) = exp
{

bλ0(1− et/b)
}

(96)

where λ0 = exp((x −m)/b)/b and x denotes the age at time 0

from the budget equation (74), we have:

ct = vFt − Ḟt + π0 (97)
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ct = vFt − Ḟt + π0 (97)
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cont’d

after substituting equations (97) and (98) into (99):

ktct − ċt = 0 (100)

the optimal solution to equation (100) is:

c∗t = c∗0 e
∫ t
0 ksds

= c∗0 e
∫ t
0

(
v−ρ−λx+s

γ

)
ds

= c∗0 e(
v−ρ

γ )t(tpx )
1/γ

(101)

the optimal trajectory of wealth after substituting (101) into (97) is:

Ḟt − vFt − π0 + c∗0 e(
v−ρ

γ )t(tpx )
1/γ = 0 (102)

after algebraic manipulations and the use of equation (71):

Ft =
(

F0 +
π

v

)
evt − āx (v − k , 0, τ, λ, m̂, b)c∗0 evt − π0

v
(104)

where m̂ = m + b ln γ
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cont’d

after substituting equations (97) and (98) into (99):
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∫ t
0 ksds = c∗0 e

∫ t
0

(
v−ρ−λx+s

γ

)
ds

= c∗0 e(
v−ρ

γ )t(tpx )
1/γ (101)
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cont’d

using the B.C. Fτ = 0:

c∗0 =
(F0 + π0/v) evτ − π0/v

āx (v − k , 0, τ, λ, m̂, b)evτ
(105)

where τ is a wealth depletion time (WDT)

substituting equation (105) into (101) and setting c∗τ = π0, we
obtain an equation for τ:(

F0 +
π0

v

)
evτ − π0

v
= π0āx (v − k , 0, τ, λ, m̂, b)e(v−k)τ (106)
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Back to Working Years

We expand the LCM to include wages during the working years (and
hence the human capital).

we want ct such that:

max
ct

∫ D̄

0
e−ρtu(ct)(tpx )dt (107)

the wealth constraint is given by:

Ḟt = v(t, Ft)Ft + wt + bt − ct and F0 = FD̄ = 0 (108)

the wage function wt , pension income bt and the valuation rate v are
as follows:

wt :=
{

w0 exp(ρt); 0 ≤ t ≤ R̄
0; t > R̄

bt :=
{

0; t ≤ R̄
π0; t > R̄ v(t, Ft) =

{
v + ξλx+t ; Ft ≥ 0
v̂ + λx+t ; Ft < 0
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cont’d

we assume ξ = 1

the optimal consumption rate is a combination of three possibilities:
either c∗t equals the wage wt , or the pension income π0, or is the
solution of the E-L equation

ζ̇t = −v(t, Ft)ζt , c∗t = e−
ρ
γ tζ
− 1

γ

t (110)

Ḟt = v(t, Ft)Ft + wt + bt − c∗t (111)

with F0 = FD̄ = 0
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Relatively Patient Individual (k ≤ k̂ < g)

when R̄ = D̄ ⇒ Ft < 0 for 0 < t < R̄

when R̄ < D̄ and π0 = 0⇒ Ft > 0 for R̄ ≤ t ≤ D̄

for π0 < exp(gR̄)⇒ Ft < 0 for 0 < t < τ and Ft > 0 for τ < t < D̄

Case 1: τ < R̄

first, we have c∗t = c∗0 exp(k̂t) and:

e−v̂ tFt = −
e−(v̂−g )t − 1

v̂ − g
+ c∗0

e−(v̂−k̂)t − 1

v̂ − k̂
(112)

for 0 < t < τ

next, we have c∗t = ĉ∗0 exp(kt) and:

e−vtFt = −
e−(v−g )t − e−(v−g )τ

v − g
+ ĉ∗0

e−(v−k)t − e−(v−k)τ

v − k
(113)

for τ < t < R̄
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+ ĉ∗0

e−(v−k)t − e−(v−k)τ

v − k
(113)

for τ < t < R̄

CHM (Cambridge 2012) Strategic FP over L Ch. #13: Lecture Notes 46 / 1



cont’d

for R̄ < t < D̄

e−vtFt = −π0
e−vt − e−vD̄

v
+ ĉ∗0

e−(v−k)t − e−(v−k)D̄

v − k
(114)

the value of τ is the root of the function:

f (τ) = ĉ∗0
e−(v−k)τ − e−(v−k)D̄

v − k
+

e−(v−g )R̄ − e−(v−g )τ

v − g

− π0
e−vR̄ − e−vD̄

v
(115)

where

ĉ∗0 = c∗0 e(k̂−k)τ, c∗0 =
v̂ − k̂

v̂ − g

e−(v̂−g )τ − 1

e−(v̂−k̂)τ − 1
(116)
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Example: k̂ = 2.5%, g = 3.5%, v = 6%, v̂ = 10.5%, ρ = 3%, γ = 3,
R̄ = 35, D̄ = 60 and π0 = 0.25⇒ it’s optimal to borrow for up to
τ = 14.85 years
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Figure 13.2. Wealth vs. Consumption (Case A)
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cont’d

Case 2: τ > R̄

first, we have c∗t = c∗0 exp(k̂t) and

e−v̂ tFt = −
e−(v̂−g )t − 1

v̂ − g
+ c∗0

e−(v̂−k̂)t − 1

v̂ − k̂
(117)

for 0 < t < R̄, and

e−v̂ tFt = −π0
e−v̂ t − e−v̂τ

v̂
+ c∗0

e−(v̂−k̂)t − e−(v̂−k̂)τ

v̂ − k̂
(118)

for R̄ < t < τ

next, we have c∗t = ĉ∗ exp(kt) and

e−rtFt = −π0
e−vt − e−vD̄

v
+ ĉ∗

e−(v−k)t − e−(v−k)D̄

v − k
(119)

for τ < t < D̄
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cont’d

the value of τ is the root of:

f (τ) = ĉ∗0
e−(v−k)τ − e−(v−k)D̄

v − k
− π0

e−vτ − e−vD̄

v
(120)

where

c∗0 =
v̂ − k̂

e−(v̂−k̂)τ − 1

(
e−(v̂−g )τ − 1

v̂ − g
− P

e−v̂ R̄ − e−v̂τ

v̂

)

and
ĉ∗ = c∗0 e(k̂−v̂ )τ
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Example: π0 = 3.25 and fix other parameters as in Fig. 13.2⇒ it’s
optimal to borrow for up to τ = 39.43 years
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Figure 13.3. Wealth vs. Consumption (Case B)
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Relatively Impatient Individual (k ≤ g ≤ k̂)

when R̄ = D̄ ⇒one simply consumes income and maintains Ft = 0

when R̄ < D̄ and π0 = 0⇒ Ft > 0 for t ≥ R̄

for π0 < exp(gR̄)⇒ Ft = 0 for t < τ and Ft > 0 for t > τ

Case 1: τ < R̄

first, we have c∗t = exp(gt) and Ft = 0 for 0 < t < τ

next, we have c∗t = ĉ∗ exp(kt) and:

e−vtFt = −
e−(v−g )t − e−(v−g )τ

v − g
+ ĉ∗

e−(v−k)t − e−(v−k)τ

v − k
(122)

for τ < t < R̄, and

e−vtFt = −π0
e−vt − e−vD̄

v
+ ĉ∗

e−(v−k)t − e−(v−k)D̄

v − k
(123)

for R̄ < t < D̄
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cont’d

the value of τ is the root of the function:

f (τ) = ĉ∗
e−(v−k)τ − e−(v−k)D̄

v − k
+

e−(v−g )R̄ − e−(v−g )τ

v − g

− π0
e−vR̄ − e−vD̄

v
(124)

where
ĉ∗ = e(g−k)τ (125)
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Example: π0 = 0.25, v̂ = 15%, k̂ = 4% and fix other parameters as in
Fig. 13.2⇒ it’s optimal to borrow for up to τ = 11.65 years
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Example: π0 = 3.25, v̂ = 15%, k̂ = 4% and fix other parameters as in
Fig. 13.2⇒ it’s optimal to borrow for up to τ = 30.19 years
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cont’d

Case 2: τ > R̄

this can only occur when π0 > exp(gR̄), i.e., the pension income is
greater than the final wage just before retirement (unlikely case)

first, we have c∗t = exp(gt) (simply consumes wage income) for
0 < t < τ

next, we have c∗t = ĉ∗ exp(kt) and:

e−vtFt = −π0
e−vt − e−vD̄

v
+ ĉ∗

e−(v−k)t − e−(v−k)D̄

v − k
(126)

for τ < t < D̄

the value τ is the root of the function:

f (τ) = ĉ∗
e−(v−k)τ − e−(v−k)D̄

v − k
− π0

e−vτ − e−vD̄

v
(127)

where
ĉ∗ = e(g−k)τ (128)
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+ ĉ∗

e−(v−k)t − e−(v−k)D̄

v − k
(126)

for τ < t < D̄

the value τ is the root of the function:

f (τ) = ĉ∗
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Impatient Individual (g < k ≤ k̂)

the optimal solution yields Ft > 0 (no debt)

the solution is c∗t = c∗0 exp(kt) and:

e−vtFt = −π0
e−vt − e−vD̄

v
+ c∗0

e−(v−k)t − e−(v−k)D̄

v − k
(129)

for R̄ ≤ t ≤ D̄, and

e−vtFt = −
e−(v−g )t − 1

v − g
+ c∗0

e−(v−k)t − 1

v − k
(130)

for 0 ≤ t ≤ R̄, with

c∗0 =
v − k

e−(v−k)D̄ − 1

(
e−(v−g )R̄ − 1

v − g
− π0

e−vR̄ − e−vD̄

v

)
(131)
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Example: k = 4%, v = 15% and fix other parameters as in Fig.
13.5⇒ Ft is positive over the entire lifecycle
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