Strategic Financial Planning over the Lifecycle Chapter \#13: Advanced Material Part I. Calculus of Variations

Narat Charupat, Huaxiong Huang and Moshe A. Milevsky

Ch. \#13: Lecture Notes

Wages and Salary in Continuous Time

- x years old: no income

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{I} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{l} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

- w_{l} : real (inflation-adjusted) wage rate in the first year of working

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{I} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

- w_{l} : real (inflation-adjusted) wage rate in the first year of working
- g : real (inflation-adjusted) rate at which your wages grow until retirement

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{I} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

- w_{l} : real (inflation-adjusted) wage rate in the first year of working
- g : real (inflation-adjusted) rate at which your wages grow until retirement
- Note: g_{t} is time-dependent or even random

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{1} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

- w_{l} : real (inflation-adjusted) wage rate in the first year of working
- g : real (inflation-adjusted) rate at which your wages grow until retirement
- Note: g_{t} is time-dependent or even random
- D years old: death age (exogenous variable)

Wages and Salary in Continuous Time

- x years old: no income
- I years old: age at which you start your working life
- R years old: retirement age (exogenous variable)
- w_{x} : inflation-adjusted annual wage (current wage)

$$
w_{x}:=\left\{\begin{array}{ccc}
0 ; & 0 \leq x \leq 1 & \text { Study Period } \tag{1}\\
w_{1} e^{g(x-l)} ; & l<x \leq R & \text { Working Stage } \\
0 ; & R<x \leq D & \text { Retirement Years }
\end{array}\right.
$$

- w_{l} : real (inflation-adjusted) wage rate in the first year of working
- g : real (inflation-adjusted) rate at which your wages grow until retirement
- Note: g_{t} is time-dependent or even random
- D years old: death age (exogenous variable)
- assume that for $x \in(R, D)$ we have zero wage

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1
$$

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \\
& =\int_{I}^{R} w_{l} e^{g(t-l)} e^{-v(t-x)} d t \quad x<1 \tag{2}
\end{align*}
$$

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \\
& =\int_{I}^{R} w_{l} e^{g(t-l)} e^{-v(t-x)} d t \quad x<1 \tag{2}\\
& =w_{I} e^{v x-g l} \int_{I}^{R} e^{(g-v) t} d t \quad x<1 \tag{3}
\end{align*}
$$

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \\
& =\int_{I}^{R} w_{l} e^{g(t-I)} e^{-v(t-x)} d t \quad x<1 \tag{2}\\
& =w_{l} e^{v x-g I} \int_{I}^{R} e^{(g-v) t} d t \quad x<1 \tag{3}\\
& =w_{I} e^{(v x-g l)}\left(\frac{e^{(g-v) R}-e^{(g-v) I}}{g-v}\right) \quad x<I \quad g \neq v \tag{4}
\end{align*}
$$

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq I \\
& =\int_{I}^{R} w_{l} e^{g(t-I)} e^{-v(t-x)} d t \quad x<I \tag{2}\\
& =w_{I} e^{v x-g I} \int_{I}^{R} e^{(g-v) t} d t \quad x<I \tag{3}\\
& =w_{I} e^{(v x-g I)}\left(\frac{e^{(g-v) R}-e^{(g-v) I}}{g-v}\right) \quad x<I \quad g \neq v \tag{4}\\
& =w_{I} e^{v(x-I)}\left(\frac{e^{(g-v)(R-I)}-1}{g-v}\right) \quad x<I \quad g \neq v \tag{5}
\end{align*}
$$

Human Capital Mathematical Expression

- not working $(x<I)$:

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq I \\
& =\int_{I}^{R} w_{l} e^{g(t-I)} e^{-v(t-x)} d t \quad x<1 \tag{2}\\
& =w_{I} e^{v x-g I} \int_{I}^{R} e^{(g-v) t} d t \quad x<I \tag{3}\\
& =w_{I} e^{(v x-g I)}\left(\frac{e^{(g-v) R}-e^{(g-v) I}}{g-v}\right) \quad x<I \quad g \neq v \tag{4}\\
& =w_{I} e^{v(x-I)}\left(\frac{e^{(g-v)(R-I)}-1}{g-v}\right) \quad x<I \quad g \neq v \tag{5}
\end{align*}
$$

- $\lim _{g \rightarrow v} \mathbf{H}_{x}=w_{I} e^{v(x-I)}(R-I)$ by L'Hopital Rule

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital
(1) still in school (not working):

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \tag{6}
\end{equation*}
$$

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital
(1) still in school (not working):

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \tag{6}
\end{equation*}
$$

(2) working already

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \tag{7}
\end{equation*}
$$

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital
(1) still in school (not working):

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \tag{6}
\end{equation*}
$$

(2) working already

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \tag{7}
\end{equation*}
$$

- v : valuation rate (discount rate)

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital
(1) still in school (not working):

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \tag{6}
\end{equation*}
$$

(2) working already

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \tag{7}
\end{equation*}
$$

- v : valuation rate (discount rate)
- $w_{t} d t$: instantaneous wage earned at t

Human Capital Values in Continuous Time

- using the continuous-time formulation, we value (discount) the cash-flows generated by the human wage process
- Human capital
(1) still in school (not working):

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{t} e^{-v(t-x)} d t \quad x \leq 1 \tag{6}
\end{equation*}
$$

(2) working already

$$
\begin{equation*}
\mathbf{H}_{x}=\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \tag{7}
\end{equation*}
$$

- v : valuation rate (discount rate)
- $w_{t} d t$: instantaneous wage earned at t
- $(t-x)$: discounts wage earned at t to present age x

cont'd

- working $(x \geq 1)$

$$
\mathbf{H}_{x}=\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1
$$

cont'd

- working $(x \geq 1)$

$$
\begin{array}{rlrl}
\mathbf{H}_{x} & =\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t & x \geq 1 \\
& =w_{x}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) & & x \geq 1, g \neq v \tag{7}
\end{array}
$$

cont'd

- working $(x \geq 1)$

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \\
& =w_{x}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad x \geq I, g \neq v \tag{7}\\
& =w_{I} e^{g(x-I)}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad \text { using } \quad w_{l} \tag{8}
\end{align*}
$$

cont'd

- working $(x \geq I)$

$$
\begin{align*}
\mathbf{H}_{x} & =\int_{x}^{D} w_{x} e^{g(t-x)} e^{-v(t-x)} d t \quad x \geq 1 \\
& =w_{x}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad x \geq I, g \neq v \tag{7}\\
& =w_{I} e^{g(x-I)}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad \text { using } \quad w_{I} \tag{8}
\end{align*}
$$

- $\lim _{g \rightarrow v} \mathbf{H}_{x}=w_{x}(R-x)$ by L'Hopital Rule

Human Capital Mathematical Expression (summary)

- not working ($x<I$)

$$
\begin{equation*}
\mathbf{H}_{x}=w_{l} e^{v(x-l)}\left(\frac{e^{(g-v)(R-l)}-1}{g-v}\right) \quad x<l \quad g \neq v \tag{6}
\end{equation*}
$$

Human Capital Mathematical Expression (summary)

- not working $(x<l)$

$$
\begin{equation*}
\mathbf{H}_{x}=w_{I} e^{v(x-I)}\left(\frac{e^{(g-v)(R-I)}-1}{g-v}\right) \quad x<l \quad g \neq v \tag{6}
\end{equation*}
$$

- working ($x \geq 1$)

$$
\begin{equation*}
\mathbf{H}_{x}=w_{l} e^{g(x-l)}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad x \geq l \quad g \neq v \tag{9}
\end{equation*}
$$

Human Capital Mathematical Expression (summary)

- not working $(x<l)$

$$
\begin{equation*}
\mathbf{H}_{x}=w_{l} e^{v(x-l)}\left(\frac{e^{(g-v)(R-l)}-1}{g-v}\right) \quad x<l \quad g \neq v \tag{6}
\end{equation*}
$$

- working ($x \geq 1$)

$$
\begin{equation*}
\mathbf{H}_{x}=w_{l} e^{g(x-l)}\left(\frac{e^{(g-v)(R-x)}-1}{g-v}\right) \quad x \geq l \quad g \neq v \tag{9}
\end{equation*}
$$

- Note: $(g-v)$ becomes a real (inflation-adjusted) quantity-we don't need to make guess about future inflation rates

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

$$
\text { (a) } \lim _{g \rightarrow v} x^{*} \Rightarrow x^{*}=R-\frac{1}{v}
$$

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

(a) $\lim _{g \rightarrow v} x^{*} \Rightarrow x^{*}=R-\frac{1}{v}$
(b) $\lim _{g \rightarrow 0} x^{*} \rightarrow-\infty$ consistent decline of $H C$

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

(a) $\lim _{g \rightarrow v} x^{*} \Rightarrow x^{*}=R-\frac{1}{v}$
(b) $\lim _{g \rightarrow 0} x^{*} \rightarrow-\infty$ consistent decline of $H C$
(c) $g>0 \Longleftrightarrow H C$ declines eventually

Does HC Grow or Shrink over Time?

- Human capital might increase with x (i.e. $\left.\mathbf{H}_{x+1}>\mathbf{H}_{x}\right) \Longleftrightarrow$ your human capital tomorrow $\left(\mathbf{H}_{x+1}\right)$ might be worth more than it is today $\left(\mathbf{H}_{x}\right)$
- Reason: \mathbf{H}_{x} and \mathbf{H}_{x+1} are not quite comparable and represent values and cash-flows at different points in time
- age at which HC achieves maximum:

$$
\frac{d \mathbf{H}_{x}}{d x}=0 \Rightarrow x^{*}=R-\frac{\ln (g / v)}{g-v} \quad g \neq v
$$

(a) $\lim _{g \rightarrow v} x^{*} \Rightarrow x^{*}=R-\frac{1}{v}$
(b) $\lim _{g \rightarrow 0} x^{*} \rightarrow-\infty$ consistent decline of HC
(c) $g>0 \Longleftrightarrow H C$ declines eventually

- Take-away: human capital in tomorrow's dollars might be larger than the value of human capital in today's dollars

Implicit Liability in Continuous Time

- to get net-human capital, we must subtract off the value of implicit liabilities from human capital

$$
\begin{equation*}
i \mathbf{L}_{x}=b_{x}\left(\frac{e^{(\tilde{g}-v)(D-x)}-1}{\tilde{g}-v}\right) \tag{13}
\end{equation*}
$$

Implicit Liability in Continuous Time

- to get net-human capital, we must subtract off the value of implicit liabilities from human capital

$$
\begin{equation*}
i \mathbf{L}_{x}=b_{x}\left(\frac{e^{(\tilde{g}-v)(D-x)}-1}{\tilde{g}-v}\right) \tag{13}
\end{equation*}
$$

- b_{x}-estimated cost
- \tilde{g}-growth rate
- v-discount rate

Consumption Smoothing: A Second Look

- we derive an optimal consumption function c_{t} by assuming we want to spread human and financial capital evenly over the lifecycle

Consumption Smoothing: A Second Look

- we derive an optimal consumption function c_{t} by assuming we want to spread human and financial capital evenly over the lifecycle
- later we do this formally by assuming we maximize the utility of consumption (results are identical when valuation rates are constant)

Consumption Smoothing: A Second Look

- we derive an optimal consumption function c_{t} by assuming we want to spread human and financial capital evenly over the lifecycle
- later we do this formally by assuming we maximize the utility of consumption (results are identical when valuation rates are constant)
- $\left\{c_{t} ; x \leq t \leq D\right\}$: any of the infinite number of consumption plans to be implemented over the remaining lifecycle c_{t}^{*} : optimal consumption plan

Consumption Smoothing: A Second Look

- we derive an optimal consumption function c_{t} by assuming we want to spread human and financial capital evenly over the lifecycle
- later we do this formally by assuming we maximize the utility of consumption (results are identical when valuation rates are constant)
- $\left\{c_{t} ; x \leq t \leq D\right\}$: any of the infinite number of consumption plans to be implemented over the remaining lifecycle c_{t}^{*} : optimal consumption plan
- $\left\{s_{t} ; x \leq t \leq R\right\}$: any of the infinite number of savings/investment plans to be implemented over the working years s_{t}^{*} : optimal savings plan

Consumption Smoothing: A Second Look

- we derive an optimal consumption function c_{t} by assuming we want to spread human and financial capital evenly over the lifecycle
- later we do this formally by assuming we maximize the utility of consumption (results are identical when valuation rates are constant)
- $\left\{c_{t} ; x \leq t \leq D\right\}$: any of the infinite number of consumption plans to be implemented over the remaining lifecycle c_{t}^{*} : optimal consumption plan
- $\left\{s_{t} ; x \leq t \leq R\right\}$: any of the infinite number of savings/investment plans to be implemented over the working years s_{t}^{*} : optimal savings plan
- ignoring implicit liabilities: $s_{t}^{*}=w_{t}-c_{t}^{*}$

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

- c_{x}^{*} : optimal consumption at current age (assume constant)

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

- c_{x}^{*} : optimal consumption at current age (assume constant)
- $k \%$ p.a.: consumption change

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

- c_{x}^{*} : optimal consumption at current age (assume constant)
- $k \%$ p.a.: consumption change

$$
\begin{equation*}
\mathbf{W}_{x}-c_{x}^{*} \int_{x}^{D} e^{k(t-x)} e^{-v(t-x)} d t=0 \tag{16}
\end{equation*}
$$

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

- c_{x}^{*} : optimal consumption at current age (assume constant)
- $k \%$ p.a.: consumption change

$$
\begin{align*}
& \mathbf{W}_{x}-c_{x}^{*} \int_{x}^{D} e^{k(t-x)} e^{-v(t-x)} d t=0 \tag{16}\\
& \mathbf{W}_{x}-c_{x}^{*}\left(\frac{e^{(k-v)(D-x)}-1}{k-v}\right)=0 \tag{17}
\end{align*}
$$

Lifetime Budget Constraint

where $c_{t}^{*}=c_{x}^{*} e^{k(t-x)}$

- c_{x}^{*} : optimal consumption at current age (assume constant)
- $k \%$ p.a.: consumption change

$$
\begin{align*}
& \mathbf{W}_{x}-c_{x}^{*} \int_{x}^{D} e^{k(t-x)} e^{-v(t-x)} d t=0 \tag{16}\\
& \mathbf{W}_{x}-c_{x}^{*}\left(\frac{e^{(k-v)(D-x)}-1}{k-v}\right)=0 \tag{17}
\end{align*}
$$

- when $k=v$ the expression collapses to $w_{x}-c_{x}^{*}(D-x)=0$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow v} c_{x}^{*}=\frac{\mathbf{W}_{x}}{D-x} \tag{19}
\end{equation*}
$$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow v} c_{x}^{*}=\frac{\mathbf{W}_{x}}{D-x} \tag{19}
\end{equation*}
$$

- EXAMPLE
$x=35, \mathbf{F}_{x}=\$ 100,000$ (financial capital), $w_{35}=50,000$ p.a., $g=6 \%$ p.a., $R=65, D=95, b_{35}=\$ 20,000$ (minimum subsistent level of consumption), $\tilde{g}=2 \%, v=5 \% \Rightarrow \boldsymbol{H}_{35}=\$ 1,749,294$, $i \mathbf{L}_{35}=\$ 556,467, \mathbf{W}_{35}=\$ 1,292,827$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow v} c_{x}^{*}=\frac{\mathbf{W}_{x}}{D-x} \tag{19}
\end{equation*}
$$

- EXAMPLE
$x=35, \mathbf{F}_{x}=\$ 100,000$ (financial capital), $w_{35}=50,000$ p.a., $g=6 \%$ p.a., $R=65, D=95, b_{35}=\$ 20,000$ (minimum subsistent level of consumption), $\tilde{g}=2 \%, v=5 \% \Rightarrow \boldsymbol{H}_{35}=\$ 1,749,294$, $i \mathbf{L}_{35}=\$ 556,467, \mathbf{W}_{35}=\$ 1,292,827$
(1) $k=4 \% \Rightarrow c_{35}^{*}=\$ 28,654$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow v} c_{x}^{*}=\frac{\mathbf{W}_{x}}{D-x} \tag{19}
\end{equation*}
$$

- EXAMPLE
$x=35, \mathbf{F}_{x}=\$ 100,000$ (financial capital), $w_{35}=50,000$ p.a., $g=6 \%$ p.a., $R=65, D=95, b_{35}=\$ 20,000$ (minimum subsistent level of consumption), $\tilde{g}=2 \%, v=5 \% \Rightarrow \boldsymbol{H}_{35}=\$ 1,749,294$, $i \mathbf{L}_{35}=\$ 556,467, \mathbf{W}_{35}=\$ 1,292,827$
(1) $k=4 \% \Rightarrow c_{35}^{*}=\$ 28,654$
(2) if k increases to $5.5 \% \Rightarrow c_{35}^{*}=\$ 18,476 \Rightarrow c_{36}^{*}=\$ 19,521$

Current Optimal Consumption Rate

- The optimal consumption rate:

$$
\begin{equation*}
c_{x}^{*}=\frac{\mathbf{W}_{x}(k-v)}{e^{(k-v)(D-x)}-1} \quad k \neq v \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow v} c_{x}^{*}=\frac{\mathbf{W}_{x}}{D-x} \tag{19}
\end{equation*}
$$

- EXAMPLE
$x=35, \mathbf{F}_{x}=\$ 100,000$ (financial capital), $w_{35}=50,000$ p.a., $g=6 \%$ p.a., $R=65, D=95, b_{35}=\$ 20,000$ (minimum subsistent level of consumption), $\tilde{g}=2 \%, v=5 \% \Rightarrow \boldsymbol{H}_{35}=\$ 1,749,294$, $i \mathbf{L}_{35}=\$ 556,467, \mathbf{W}_{35}=\$ 1,292,827$
(1) $k=4 \% \Rightarrow c_{35}^{*}=\$ 28,654$
(2) if k increases to $5.5 \% \Rightarrow c_{35}^{*}=\$ 18,476 \Rightarrow c_{36}^{*}=\$ 19,521$
(3) $k=-2 \%$ (impatient and want to spend

$$
\text { money }) \Rightarrow c_{35}^{*}=\$ 91,876 \Rightarrow c_{36}^{*}=\$ 50,422
$$

Effect of Wage Growth and Valuation Rates

$g \uparrow$

Effect of Wage Growth and Valuation Rates

$$
w_{x} \uparrow
$$

Effect of Wage Growth and Valuation Rates

Effect of Wage Growth and Valuation Rates

Effect of Wage Growth and Valuation Rates

$v \uparrow$

Effect of Wage Growth and Valuation Rates

Effect of Wage Growth and Valuation Rates

$v \downarrow$

Effect of Wage Growth and Valuation Rates

$$
v \downarrow \longrightarrow
$$

Effect of Wage Growth and Valuation Rates

Note: g and k determine which effect dominates

Calculus of Variation

- Goal: to solve the optimal consumption problem more rigorously (i.e. without guessing the functional form of the optimal consumption function)

Calculus of Variation

- Goal: to solve the optimal consumption problem more rigorously (i.e. without guessing the functional form of the optimal consumption function)
- we start with the generic function:

$$
\begin{equation*}
J\left[z_{t}^{*}\right]=\max _{z_{t}} J\left[z_{t}\right] \quad \text { where } J\left[z_{t}\right]:=\int_{a}^{b} \phi\left(t, z_{t}, \dot{z}_{t}\right) d t \tag{21}
\end{equation*}
$$

Calculus of Variation

- Goal: to solve the optimal consumption problem more rigorously (i.e. without guessing the functional form of the optimal consumption function)
- we start with the generic function:

$$
\begin{equation*}
J\left[z_{t}^{*}\right]=\max _{z_{t}} J\left[z_{t}\right] \quad \text { where } J\left[z_{t}\right]:=\int_{a}^{b} \phi\left(t, z_{t}, \dot{z}_{t}\right) d t \tag{21}
\end{equation*}
$$

- Task: to choose a particular path z_{t}^{*} from a to b so that the integral reaches its maximum value

Calculus of Variation

- Goal: to solve the optimal consumption problem more rigorously (i.e. without guessing the functional form of the optimal consumption function)
- we start with the generic function:

$$
\begin{equation*}
J\left[z_{t}^{*}\right]=\max _{z_{t}} J\left[z_{t}\right] \quad \text { where } J\left[z_{t}\right]:=\int_{a}^{b} \phi\left(t, z_{t}, \dot{z}_{t}\right) d t \tag{21}
\end{equation*}
$$

- Task: to choose a particular path z_{t}^{*} from a to b so that the integral reaches its maximum value
- Method: by Calculus of Variation (Euler - Lagrange)

Optimal Path

(1) add perturbation δz_{t} to the optimal path z_{t}^{*} (if it exists) $\Leftrightarrow \delta z_{t}=h \eta_{t}$

Optimal Path

(1) add perturbation δz_{t} to the optimal path z_{t}^{*} (if it exists) $\Leftrightarrow \delta z_{t}=h \eta_{t}$
(2)

$$
\begin{equation*}
\delta J:=J\left[z_{t}^{*}+\delta z_{t}\right]-J\left[z_{t}^{*}\right] \tag{23}
\end{equation*}
$$

Optimal Path

(1) add perturbation δz_{t} to the optimal path z_{t}^{*} (if it exists) $\Leftrightarrow \delta z_{t}=h \eta_{t}$
(2)

$$
\begin{equation*}
\delta J:=J\left[z_{t}^{*}+\delta z_{t}\right]-J\left[z_{t}^{*}\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
J\left[z_{t}^{*}+\delta z_{t}\right]=\int_{a}^{b} \phi\left(t, z_{t}^{*}+\delta z_{t}, \dot{z}_{t}^{*}+\dot{\delta} z_{t}\right) d t \tag{24}
\end{equation*}
$$

Optimal Path

(1) add perturbation δz_{t} to the optimal path z_{t}^{*} (if it exists) $\Leftrightarrow \delta z_{t}=h \eta_{t}$
(2)

$$
\begin{equation*}
\delta J:=J\left[z_{t}^{*}+\delta z_{t}\right]-J\left[z_{t}^{*}\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
J\left[z_{t}^{*}+\delta z_{t}\right]= & \int_{a}^{b} \phi\left(t, z_{t}^{*}+\delta z_{t}, \dot{z}_{t}^{*}+\dot{\delta} z_{t}\right) d t \tag{24}\\
\phi\left(t, z_{t}^{*}+\delta z_{t}, \dot{z}_{t}^{*}+\dot{\delta} z_{t}\right) & ={ }^{\text {Taylor }} \phi\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)+\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t} \\
& +\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \dot{\delta} z_{t}+\text { h.o.t } \tag{25}
\end{align*}
$$

where 2,3 denote partial derivative w.r.t. $2^{\text {nd }}$ and $3^{\text {rd }}$ variables

Optimal Path

(1) add perturbation δz_{t} to the optimal path z_{t}^{*} (if it exists) $\Leftrightarrow \delta z_{t}=h \eta_{t}$
(2)

$$
\begin{equation*}
\delta J:=J\left[z_{t}^{*}+\delta z_{t}\right]-J\left[z_{t}^{*}\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
J\left[z_{t}^{*}+\delta z_{t}\right]= & \int_{a}^{b} \phi\left(t, z_{t}^{*}+\delta z_{t}, \dot{z}_{t}^{*}+\dot{\delta} z_{t}\right) d t \tag{24}\\
\phi\left(t, z_{t}^{*}+\delta z_{t}, \dot{z}_{t}^{*}+\dot{\delta} z_{t}\right) & ={ }^{\text {Taylor }} \phi\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)+\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t} \\
& +\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \dot{\delta} z_{t}+\text { h.o.t. } \tag{25}
\end{align*}
$$

where 2,3 denote partial derivative w.r.t. $2^{\text {nd }}$ and $3^{\text {rd }}$ variables

$$
\begin{align*}
J\left[z_{t}^{*}+\delta z_{t}\right]-J\left[z_{t}^{*}\right] & =\int_{a}^{b} \phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t} d t \\
& +\left\{\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \dot{\delta} z_{t}+\text { h.o.t. }\right\} d t \tag{26}
\end{align*}
$$

cont'd

$$
\begin{align*}
\delta J= & { }^{I B P} \quad \int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t \\
& +\left.\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t}\right|_{z_{a}} ^{z_{b}} \tag{27}\\
= & \int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t
\end{align*}
$$

since z_{a} and z_{b} are given and $\delta z_{a}=\delta z_{b}=0$

cont'd

$$
\begin{align*}
\delta J= & \int_{a}^{b B P}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t \\
& +\left.\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t}\right|_{z_{a}} ^{z_{b}} \tag{27}\\
= & \int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t
\end{align*}
$$

since z_{a} and z_{b} are given and $\delta z_{a}=\delta z_{b}=0$
((by definition (max)

$$
\begin{equation*}
\int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t \leq 0 \tag{28}
\end{equation*}
$$

cont'd

$$
\begin{align*}
\delta J= & \int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t \\
& +\left.\phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right) \delta z_{t}\right|_{z_{a}} ^{z_{b}} \tag{27}\\
= & \int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t
\end{align*}
$$

since z_{a} and z_{b} are given and $\delta z_{a}=\delta z_{b}=0$
(a) by definition (max)

$$
\begin{equation*}
\int_{a}^{b}\left\{\left[\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)\right] \delta z_{t}+\text { h.o.t. }\right\} d t \leq 0 \tag{28}
\end{equation*}
$$

(6) necessary condition for optimality is given by the Euler-Lagrange equation

$$
\begin{equation*}
\phi_{2}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)-\frac{d}{d t} \phi_{3}\left(t, z_{t}^{*}, \dot{z}_{t}^{*}\right)=0 \tag{29}
\end{equation*}
$$

Smooth Consumption: A Final Look

- Question: What is the optimal consumption rate which will carry you from now (x) until the time of death (D)?

Smooth Consumption: A Final Look

- Question: What is the optimal consumption rate which will carry you from now (x) until the time of death (D)?
- in the uility maximizing framework, we solve the optimal consumption problem

$$
\begin{equation*}
\max _{c_{t}} E\left[\int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) d t\right] \tag{30}
\end{equation*}
$$

where ρ (a new variable) is called the subjective discount rate

Smooth Consumption: A Final Look

- Question: What is the optimal consumption rate which will carry you from now (x) until the time of death (D)?
- in the uility maximizing framework, we solve the optimal consumption problem

$$
\begin{equation*}
\max _{c_{t}} E\left[\int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) d t\right] \tag{30}
\end{equation*}
$$

where ρ (a new variable) is called the subjective discount rate

- we have the budget equation:

$$
\begin{equation*}
\dot{F}_{t}=v F_{t}+w_{t}-c_{t} \quad \text { given } \quad F_{0} \quad \text { and } \quad F_{\bar{D}}=0 \tag{31}
\end{equation*}
$$

Smooth Consumption: A Final Look

- Question: What is the optimal consumption rate which will carry you from now (x) until the time of death (D)?
- in the uility maximizing framework, we solve the optimal consumption problem

$$
\begin{equation*}
\max _{c_{t}} E\left[\int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) d t\right] \tag{30}
\end{equation*}
$$

where ρ (a new variable) is called the subjective discount rate

- we have the budget equation:

$$
\begin{equation*}
\dot{F}_{t}=v F_{t}+w_{t}-c_{t} \quad \text { given } \quad F_{0} \quad \text { and } \quad F_{\bar{D}}=0 \tag{31}
\end{equation*}
$$

- assume a relative risk-aversion (CRRA) utility function

$$
u\left(c_{t}\right)= \begin{cases}\frac{c_{t}^{1-\gamma}-1}{1-\gamma} & \gamma \neq 1 \tag{32}\\ \ln \left(c_{t}\right) & \gamma=1\end{cases}
$$

Solution of Optimal Consumption Problem

- use Calculus of Variations technique for the function:

$$
\begin{equation*}
\phi\left(t, z_{t}, \dot{z}_{t}\right)=e^{-\rho t} u\left(w_{t}+v z_{t}-\dot{z}_{t}\right) \tag{33}
\end{equation*}
$$

Solution of Optimal Consumption Problem

- use Calculus of Variations technique for the function:

$$
\begin{equation*}
\phi\left(t, z_{t}, \dot{z}_{t}\right)=e^{-\rho t} u\left(w_{t}+v z_{t}-\dot{z}_{t}\right) \tag{33}
\end{equation*}
$$

- using equation (29), we obtain the ODE

$$
\begin{equation*}
\ddot{F}_{t}-(k+v) \dot{F}_{t}+k v F_{t}+k w_{t}-\dot{w}_{t}=0 \quad \text { for } \quad t \leq \bar{R} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{F}_{t}-(k+v) \dot{F}_{t}+k v F_{t}=0 \quad \text { for } \quad t>\bar{R} \tag{35}
\end{equation*}
$$

with F_{0} given, $F_{\bar{D}}=0$ and $k=(v-\rho) \gamma^{-1}$.

Solution of Optimal Consumption Problem

- use Calculus of Variations technique for the function:

$$
\begin{equation*}
\phi\left(t, z_{t}, \dot{z}_{t}\right)=e^{-\rho t} u\left(w_{t}+v z_{t}-\dot{z}_{t}\right) \tag{33}
\end{equation*}
$$

- using equation (29), we obtain the ODE

$$
\begin{equation*}
\ddot{F}_{t}-(k+v) \dot{F}_{t}+k v F_{t}+k w_{t}-\dot{w}_{t}=0 \quad \text { for } \quad t \leq \bar{R} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{F}_{t}-(k+v) \dot{F}_{t}+k v F_{t}=0 \quad \text { for } \quad t>\bar{R} \tag{35}
\end{equation*}
$$

with F_{0} given, $F_{\bar{D}}=0$ and $k=(v-\rho) \gamma^{-1}$.

- Note: for $\gamma \neq 1$ we will actually use $u\left(c_{t}\right)=c_{t}^{1-\gamma} /(1-\gamma)$ for simplicity as it does not affect the optimal solution

cont'd

- the optimal consumption rate:

$$
\frac{d}{d t} \log c_{t}^{*}=k ; \quad \text { as } \quad c_{t}^{*}=c_{0}^{*} \exp (k t)
$$

cont'd

- the optimal consumption rate:

$$
\frac{d}{d t} \log c_{t}^{*}=k ; \quad \text { as } \quad c_{t}^{*}=c_{0}^{*} \exp (k t)
$$

- to obtain c_{0}^{*}, we integrate the budget equation from $t=0$ to $t=\bar{D}$ and assume we already started earning wages:

$$
\begin{equation*}
\dot{F}_{t}=v F_{t}+w_{0} e^{g t} 1_{\{t<\bar{R}\}}-c_{0}^{*} e^{k t} \tag{38}
\end{equation*}
$$

where $\bar{R}=R-x$ (time to retirement) and $\bar{D}=D-x$ (time to death)

cont'd

- the optimal consumption rate:

$$
\frac{d}{d t} \log c_{t}^{*}=k ; \quad \text { as } \quad c_{t}^{*}=c_{0}^{*} \exp (k t)
$$

- to obtain c_{0}^{*}, we integrate the budget equation from $t=0$ to $t=\bar{D}$ and assume we already started earning wages:

$$
\begin{equation*}
\dot{F}_{t}=v F_{t}+w_{0} e^{g t} 1_{\{t<\bar{R}\}}-c_{0}^{*} e^{k t} \tag{38}
\end{equation*}
$$

where $\bar{R}=R-x$ (time to retirement) and $\bar{D}=D-x$ (time to death)

- we get:

$$
\begin{equation*}
F_{0}=-\frac{w_{0}}{g-v}\left(1-e^{(g-v) \bar{R}}\right)+\frac{c_{0}^{*}}{k-v}\left(1-e^{(k-v) \bar{D}}\right) \tag{37}
\end{equation*}
$$

cont'd

- the optimal consumption rate:

$$
\frac{d}{d t} \log c_{t}^{*}=k ; \quad \text { as } \quad c_{t}^{*}=c_{0}^{*} \exp (k t)
$$

- to obtain c_{0}^{*}, we integrate the budget equation from $t=0$ to $t=\bar{D}$ and assume we already started earning wages:

$$
\begin{equation*}
\dot{F}_{t}=v F_{t}+w_{0} e^{g t} 1_{\{t<\bar{R}\}}-c_{0}^{*} e^{k t} \tag{38}
\end{equation*}
$$

where $\bar{R}=R-x$ (time to retirement) and $\bar{D}=D-x$ (time to death)

- we get:

$$
\begin{equation*}
F_{0}=-\frac{w_{0}}{g-v}\left(1-e^{(g-v) \bar{R}}\right)+\frac{c_{0}^{*}}{k-v}\left(1-e^{(k-v) \bar{D}}\right) \tag{37}
\end{equation*}
$$

- Assumptions:
a) borrowing rate $=$ lending rate $=$ constant
b) no pension after retirement
c) no mortality risk

Life and Death in Continuous Time

- basic concepts needed for modeling over uncertain lifetimes

Life and Death in Continuous Time

- basic concepts needed for modeling over uncertain lifetimes
- conditional probability of surviving t more years:

$$
{ }_{t} p_{x}:=1-F_{x}(t)=\operatorname{Pr}\left[\mathbf{T}_{x}>t\right]
$$

where \mathbf{T}_{x} is a r.v. representing the remaining lifetime for individual aged x

Life and Death in Continuous Time

- basic concepts needed for modeling over uncertain lifetimes
- conditional probability of surviving t more years:

$$
{ }_{t} p_{x}:=1-F_{x}(t)=\operatorname{Pr}\left[\mathbf{T}_{x}>t\right]
$$

where \mathbf{T}_{x} is a r.v. representing the remaining lifetime for individual aged x

- conditional probability of dying before or at age $x+t \Leftrightarrow$ cumulative density function (CDF) of \mathbf{T}_{x} :

$$
\begin{gather*}
F_{x}(t):=1-{ }_{t} p_{x}=\operatorname{Pr}\left[\mathbf{T}_{x} \leq t\right] \tag{39}\\
F_{x}(t)=\int_{0}^{t} f_{x}(s) d s \tag{40}
\end{gather*}
$$

where $f_{x}(t)$ is the probability density function (PDF) of r.v. \mathbf{T}_{x}

Life and Death in Continuous Time

- basic concepts needed for modeling over uncertain lifetimes
- conditional probability of surviving t more years:

$$
{ }_{t} p_{x}:=1-F_{x}(t)=\operatorname{Pr}\left[\mathbf{T}_{x}>t\right]
$$

where \mathbf{T}_{x} is a r.v. representing the remaining lifetime for individual aged x

- conditional probability of dying before or at age $x+t \Leftrightarrow$ cumulative density function (CDF) of \mathbf{T}_{x} :

$$
\begin{gather*}
F_{x}(t):=1-{ }_{t} p_{x}=\operatorname{Pr}\left[\mathbf{T}_{x} \leq t\right] \tag{39}\\
F_{x}(t)=\int_{0}^{t} f_{x}(s) d s \tag{40}
\end{gather*}
$$

where $f_{x}(t)$ is the probability density function (PDF) of r.v. \mathbf{T}_{x}

- as long as ${ }_{t} p_{x}$ is constant or decreasing w.r.t. t

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s} \tag{41}
\end{equation*}
$$

λ_{s} : instantaneous rate of death at age s

From $F_{x} \rightarrow f_{x}(t) \rightarrow \lambda_{x+t}$ and back again

- we start with:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s} \tag{41}
\end{equation*}
$$

From $F_{x} \rightarrow f_{x}(t) \rightarrow \lambda_{x+t}$ and back again

- we start with:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s} \tag{41}
\end{equation*}
$$

- through the change of variables $u=s-x$:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{0}^{t} \lambda_{x+u} d u} \tag{42}
\end{equation*}
$$

From $F_{x} \rightarrow f_{x}(t) \rightarrow \lambda_{x+t}$ and back again

- we start with:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s} \tag{41}
\end{equation*}
$$

- through the change of variables $u=s-x$:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{0}^{t} \lambda_{x+u} d u} \tag{42}
\end{equation*}
$$

- we take the derivative of equation (42):

$$
\frac{\partial}{\partial t}\left({ }_{t} p_{x}\right)=-\left({ }_{t} p_{x}\right) \lambda_{x+t}
$$

From $F_{x} \rightarrow f_{x}(t) \rightarrow \lambda_{x+t}$ and back again

- we start with:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s} \tag{41}
\end{equation*}
$$

- through the change of variables $u=s-x$:

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{0}^{t} \lambda_{x+u} d u} \tag{42}
\end{equation*}
$$

- we take the derivative of equation (42):

$$
\frac{\partial}{\partial t}\left({ }_{t} p_{x}\right)=-\left({ }_{t} p_{x}\right) \lambda_{x+t}
$$

- we obtain the density function:

$$
\begin{equation*}
f_{x}(t)=\frac{\partial}{\partial t}\left(1-{ }_{t} p_{x}\right)=\left(1-F_{x}(t)\right) \lambda_{x+t} \tag{43}
\end{equation*}
$$

cont'd

- use equation (43) to represent the Instant Force of Mortality (IFM):

$$
\begin{equation*}
\lambda_{x+t}=\frac{f_{x}(t)}{1-F_{x}(t)} \quad t \geq 0 \tag{44}
\end{equation*}
$$

cont'd

- use equation (43) to represent the Instant Force of Mortality (IFM):

$$
\begin{equation*}
\lambda_{x+t}=\frac{f_{x}(t)}{1-F_{x}(t)} \quad t \geq 0 \tag{44}
\end{equation*}
$$

- which leads to:

$$
\begin{equation*}
F_{x}(t)=1-\frac{f_{x}(t)}{\lambda_{x+t}} \tag{45}
\end{equation*}
$$

cont'd

- use equation (43) to represent the Instant Force of Mortality (IFM):

$$
\begin{equation*}
\lambda_{x+t}=\frac{f_{x}(t)}{1-F_{x}(t)} \quad t \geq 0 \tag{44}
\end{equation*}
$$

- which leads to:

$$
\begin{equation*}
F_{x}(t)=1-\frac{f_{x}(t)}{\lambda_{x+t}} \tag{45}
\end{equation*}
$$

- and

$$
\begin{equation*}
f_{x}(t)={ }_{t} p_{x} \lambda_{x+t} \tag{46}
\end{equation*}
$$

Concept of Moments

- \mathbf{T}_{x} is a continuous r.v.

Concept of Moments

- \mathbf{T}_{x} is a continuous r.v.
- First moment of its distribution:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} t f_{x}(t) d t \tag{47}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty}\left({ }_{t} p_{x}\right) d t \tag{48}
\end{equation*}
$$

Concept of Moments

- \mathbf{T}_{x} is a continuous r.v.
- First moment of its distribution:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} t f_{x}(t) d t \tag{47}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty}\left({ }_{t} p_{x}\right) d t \tag{48}
\end{equation*}
$$

- Second moment (square mean) of its distribution:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}^{2}\right]=\int_{0}^{\infty} t^{2} f_{x}(t) d \tag{49}
\end{equation*}
$$

Concept of Moments

- \mathbf{T}_{x} is a continuous r.v.
- First moment of its distribution:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} t f_{x}(t) d t \tag{47}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty}\left({ }_{t} p_{x}\right) d t \tag{48}
\end{equation*}
$$

- Second moment (square mean) of its distribution:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}^{2}\right]=\int_{0}^{\infty} t^{2} f_{x}(t) d \tag{49}
\end{equation*}
$$

- Standard deviation

$$
\begin{equation*}
D\left[\mathbf{T}_{x}\right]=\sqrt{E\left[\mathbf{T}_{x}^{2}\right]-E^{2}\left[\mathbf{T}_{x}\right]} \tag{50}
\end{equation*}
$$

Exponential Law of Mortality

- this law assumes IFM satisfies:

$$
\lambda_{x+t}=\lambda
$$

Exponential Law of Mortality

- this law assumes IFM satisfies:

$$
\lambda_{x+t}=\lambda
$$

- from equation (41):

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s}=e^{-\lambda t} \tag{51}
\end{equation*}
$$

Exponential Law of Mortality

- this law assumes IFM satisfies:

$$
\lambda_{x+t}=\lambda
$$

- from equation (41):

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s}=e^{-\lambda t} \tag{51}
\end{equation*}
$$

- the CDF and PDF are:

$$
\begin{align*}
F_{x}(t) & =1-e^{-\lambda t} \tag{52}\\
f_{x}(t) & =\lambda e^{-\lambda t} \tag{53}
\end{align*}
$$

Exponential Law of Mortality

- this law assumes IFM satisfies:

$$
\lambda_{x+t}=\lambda
$$

- from equation (41):

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s}=e^{-\lambda t} \tag{51}
\end{equation*}
$$

- the CDF and PDF are:

$$
\begin{align*}
F_{x}(t) & =1-e^{-\lambda t} \tag{52}\\
f_{x}(t) & =\lambda e^{-\lambda t} \tag{53}
\end{align*}
$$

- the expected remaining lifetime (ERL):

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\frac{1}{\lambda} \tag{54}
\end{equation*}
$$

Exponential Law of Mortality

- this law assumes IFM satisfies:

$$
\lambda_{x+t}=\lambda
$$

- from equation (41):

$$
\begin{equation*}
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \lambda_{s} d s}=e^{-\lambda t} \tag{51}
\end{equation*}
$$

- the CDF and PDF are:

$$
\begin{align*}
F_{x}(t) & =1-e^{-\lambda t} \tag{52}\\
f_{x}(t) & =\lambda e^{-\lambda t} \tag{53}
\end{align*}
$$

- the expected remaining lifetime (ERL):

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\frac{1}{\lambda} \tag{54}
\end{equation*}
$$

- the median remaining lifetime (MRL):

$$
\begin{equation*}
\frac{1}{2}=e^{-\lambda M\left[\mathbf{T}_{x}\right]} \Longleftrightarrow M\left[\mathbf{T}_{x}\right]=(\ln 2) \lambda^{-1}<\lambda^{-1} \tag{55}
\end{equation*}
$$

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

- called Gompertz-Makeham if $\lambda>0$ and Gompertz if $\lambda=0$

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

- called Gompertz-Makeham if $\lambda>0$ and Gompertz if $\lambda=0$
- m: selected median lifespan

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

- called Gompertz-Makeham if $\lambda>0$ and Gompertz if $\lambda=0$
- m: selected median lifespan
- b: dispersion coefficient

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

- called Gompertz-Makeham if $\lambda>0$ and Gompertz if $\lambda=0$
- m: selected median lifespan
- b: dispersion coefficient
- λ : component of death rate attributable to accidents

Gompertz-Makeham Law of Mortality

- this law assumes the IFM satisfies

$$
\begin{equation*}
\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b} \quad t \geq 0 \tag{56}
\end{equation*}
$$

- called Gompertz-Makeham if $\lambda>0$ and Gompertz if $\lambda=0$
- m: selected median lifespan
- b: dispersion coefficient
- λ : component of death rate attributable to accidents
- $\frac{1}{b} e^{(x-m) / b}$: reflects natural death causes (increases with x and $\rightarrow \infty$ as $t \rightarrow \infty$)

cont'd

- from equation (41):

$$
{ }_{t} p_{x}=e^{-\int_{x}^{x+t}\left(\lambda+\frac{1}{b} e^{(s-m) / b}\right) d s}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} ; F_{x}(t)=1-{ }_{t} p_{x}
$$

cont'd

- from equation (41):

$$
{ }_{t} p_{x}=e^{-\int_{x}^{x+t}\left(\lambda+\frac{1}{b} e^{(s-m) / b}\right) d s}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} ; F_{x}(t)=1-{ }_{t} p_{x}
$$

- we recover the PDF for the remaining lifetime r.v. $\left(f_{x}(t)=F_{x}^{\prime}(t)\right)$:

$$
\begin{equation*}
f_{x}(t)=\left(\lambda+\frac{1}{b} e^{(x+t-m) / b}\right) e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} \tag{57}
\end{equation*}
$$

cont'd

- from equation (41):

$$
{ }_{t} p_{x}=e^{-\int_{x}^{x+t}\left(\lambda+\frac{1}{b} e^{(s-m) / b}\right) d s}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} ; F_{x}(t)=1-{ }_{t} p_{x}
$$

- we recover the PDF for the remaining lifetime r.v. $\left(f_{x}(t)=F_{x}^{\prime}(t)\right)$:

$$
\begin{equation*}
f_{x}(t)=\left(\lambda+\frac{1}{b} e^{(x+t-m) / b}\right) e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} \tag{57}
\end{equation*}
$$

- ERL under GM law of mortality is:

$$
\begin{equation*}
E\left[\mathbf{T}_{x}\right]=\int_{0}^{\infty} e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)} d t=\frac{b \Gamma\left(-\lambda b, b\left(\lambda_{x}-\lambda\right)\right)}{e^{(m-x) \lambda+b\left(\lambda-\lambda_{x}\right)}} \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(a, c)=\int_{c}^{\infty} e^{-t} t^{a-1} d t \tag{59}
\end{equation*}
$$

Pension Annuity

- assume insurance company pays $\$ 1$ per year for the rest of the person's life

Pension Annuity

- assume insurance company pays $\$ 1$ per year for the rest of the person's life
- the stochastic value of the payment quantity is:

$$
\begin{equation*}
\mathbf{a}_{x}=\int_{0}^{\mathbf{T}_{x}} e^{-v t} d t=\int_{0}^{\infty} e^{-v t} 1_{\left\{\mathbf{T}_{x} \geq t\right\}} d t \tag{60}
\end{equation*}
$$

where v is the effective valuation rate p.a. and

$$
1_{\left\{\mathbf{T}_{x} \geq t\right\}}= \begin{cases}1 & \text { when } \quad \mathbf{T}_{x} \geq t \\ 0 & \text { when } \quad \mathbf{T}_{x}<t\end{cases}
$$

Pension Annuity

- assume insurance company pays $\$ 1$ per year for the rest of the person's life
- the stochastic value of the payment quantity is:

$$
\begin{equation*}
\mathbf{a}_{x}=\int_{0}^{\mathbf{T}_{x}} e^{-v t} d t=\int_{0}^{\infty} e^{-v t} 1_{\left\{\mathbf{T}_{x} \geq t\right\}} d t \tag{60}
\end{equation*}
$$

where v is the effective valuation rate p.a. and

$$
1_{\left\{\mathbf{T}_{x} \geq t\right\}}=\left\{\begin{array}{lll}
1 & \text { when } \quad \mathbf{T}_{x} \geq t \\
0 & \text { when } \quad \mathbf{T}_{x}<t
\end{array}\right.
$$

- the expected value of r.v. \mathbf{a}_{x} (immediate annuity factor) is:

$$
\begin{equation*}
\bar{a}_{x}=E\left[\int_{0}^{\mathbf{T}_{x}} e^{-v t} d t\right]=\int_{0}^{\infty} e^{-v t}{ }_{t} p_{x} d t=\int_{0}^{\infty} e^{-\left(v t+\int_{0}^{t} \lambda_{x+s} d s\right)} d t \tag{61}
\end{equation*}
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{X}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

- we have $\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b},{ }_{t} p_{x}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)}$ and:

$$
\bar{a}_{x}=e^{b\left(\lambda_{x}-\lambda\right)} \int_{0}^{\infty} e^{-(\lambda+v) t-b\left(\lambda_{x}-\lambda\right) e^{t / b}} d t
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

- we have $\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b},{ }_{t} p_{x}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)}$ and:

$$
\bar{a}_{x}=e^{b\left(\lambda_{x}-\lambda\right)} \int_{0}^{\infty} e^{-(\lambda+v) t-b\left(\lambda_{x}-\lambda\right) e^{t / b}} d t
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

- we have $\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b},{ }_{t} p_{x}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)}$ and:

$$
\begin{aligned}
\bar{a}_{x} & =e^{b\left(\lambda_{x}-\lambda\right)} \int_{0}^{\infty} e^{-(\lambda+v) t-b\left(\lambda_{x}-\lambda\right) e^{t / b}} d t \\
& =b e^{b\left(\lambda_{x}-\lambda\right)} \int_{1}^{\infty} s^{-(\lambda+v) b-1} e^{-b\left(\lambda_{x}-\lambda\right) s} d s
\end{aligned}
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

- we have $\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b},{ }_{t} p_{x}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)}$ and:

$$
\begin{aligned}
\bar{a}_{x} & =e^{b\left(\lambda_{x}-\lambda\right)} \int_{0}^{\infty} e^{-(\lambda+v) t-b\left(\lambda_{x}-\lambda\right) e^{t / b}} d t \\
& =b e^{b\left(\lambda_{x}-\lambda\right)} \int_{1}^{\infty} s^{-(\lambda+v) b-1} e^{-b\left(\lambda_{x}-\lambda\right) s} d s \\
& =\frac{b\left(b \lambda_{x}-\lambda\right)^{(\lambda+v) b+1}}{b\left(\lambda_{x}-\lambda\right)} e^{b\left(\lambda_{x}-\lambda\right)} \int_{b\left(\lambda_{x}-\lambda\right)}^{\infty} w^{-(\lambda+v) b-1} e^{-w} d w
\end{aligned}
$$

Annuities: Examples

(1) Annuities: Exponential Lifetime

- \mathbf{T}_{x} is exponentially distributed $\Rightarrow_{t} p_{x}=e^{-\lambda t}$ and:

$$
\begin{equation*}
\bar{a}_{x}=\int_{0}^{\infty} e^{-(v+\lambda) t} d t=\frac{1}{v+\lambda} \tag{62}
\end{equation*}
$$

(2) Annuities: GM Mortality

- we have $\lambda_{x}=\lambda+\frac{1}{b} e^{(x-m) / b},{ }_{t} p_{x}=e^{-\lambda t+b\left(\lambda_{x}-\lambda\right)\left(1-e^{t / b}\right)}$ and:

$$
\begin{align*}
\bar{a}_{x} & =e^{b\left(\lambda_{x}-\lambda\right)} \int_{0}^{\infty} e^{-(\lambda+v) t-b\left(\lambda_{x}-\lambda\right) e^{t / b}} d t \\
& =b e^{b\left(\lambda_{x}-\lambda\right)} \int_{1}^{\infty} s^{-(\lambda+v) b-1} e^{-b\left(\lambda_{x}-\lambda\right) s} d s \\
& =\frac{b\left(b \lambda_{x}-\lambda\right)^{(\lambda+v) b+1}}{b\left(\lambda_{x}-\lambda\right)} e^{b\left(\lambda_{x}-\lambda\right)} \int_{b\left(\lambda_{x}-\lambda\right)}^{\infty} w^{-(\lambda+v) b-1} e^{-w} d w \\
& =b \Gamma\left[-(\lambda+v) b, e^{\left(\frac{x-m}{b}\right)}\right] e^{-\left[(m-x)(\lambda+v)-e^{\left(\frac{x-m}{b}\right)}\right]} \tag{67}
\end{align*}
$$

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65
- EXAMPLE 2: GM mortality, $\lambda=0.01, m=86.34, b=9.5$, $v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=11.394, \bar{a}_{75}=8.181, \bar{a}_{85}=5.026$

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65
- EXAMPLE 2: GM mortality, $\lambda=0.01, m=86.34, b=9.5$, $v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=11.394, \bar{a}_{75}=8.181, \bar{a}_{85}=5.026$
- EXAMPLE 3: GM mortality, $\lambda=0, m=86.34, b=9.5, v=6 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=10.474, \bar{a}_{75}=7.696, \bar{a}_{85}=4.832$

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65
- EXAMPLE 2: GM mortality, $\lambda=0.01, m=86.34, b=9.5$, $v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=11.394, \bar{a}_{75}=8.181, \bar{a}_{85}=5.026$
- EXAMPLE 3: GM mortality, $\lambda=0, m=86.34, b=9.5, v=6 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=10.474, \bar{a}_{75}=7.696, \bar{a}_{85}=4.832$
- the higher the interest rate, the lower the value of a (mortality free) fixed income bond

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65
- EXAMPLE 2: GM mortality, $\lambda=0.01, m=86.34, b=9.5$, $v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=11.394, \bar{a}_{75}=8.181, \bar{a}_{85}=5.026$
- EXAMPLE 3: GM mortality, $\lambda=0, m=86.34, b=9.5, v=6 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=10.474, \bar{a}_{75}=7.696, \bar{a}_{85}=4.832$
- the higher the interest rate, the lower the value of a (mortality free) fixed income bond
- EXAMPLE 4: GM mortality, $\lambda=0, m=90, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=13.753, \bar{a}_{75}=10.094, \bar{a}_{85}=6.434$

cont'd

- EXAMPLE 1: GM mortality, $\lambda=0, m=86.34, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=12.454, \bar{a}_{75}=8.718, \bar{a}_{85}=5.234$
- the older the annuitant at the age of annuitization, the lower is the cost (and hence value) of each dollar of lifetime income
- a pension annuity that pays $\$ 65 / \mathrm{mo}(\$ 7,800 / \mathrm{yr})$ has a value of $(12.454)(7,800)=\$ 97,141$ at age 65
- EXAMPLE 2: GM mortality, $\lambda=0.01, m=86.34, b=9.5$, $v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=11.394, \bar{a}_{75}=8.181, \bar{a}_{85}=5.026$
- EXAMPLE 3: GM mortality, $\lambda=0, m=86.34, b=9.5, v=6 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=10.474, \bar{a}_{75}=7.696, \bar{a}_{85}=4.832$
- the higher the interest rate, the lower the value of a (mortality free) fixed income bond
- EXAMPLE 4: GM mortality, $\lambda=0, m=90, b=9.5, v=4 \%$ and $x=65,75,85 \Rightarrow \bar{a}_{65}=13.753, \bar{a}_{75}=10.094, \bar{a}_{85}=6.434$
- the value of the annuity increases due to a longer lifespan

cont'd

- the most general (analytic) annuity factor under GM:

$$
\begin{equation*}
\bar{a}_{x}\left(v, T_{1}, T_{2}, m, b\right):=\int_{T_{1}}^{T_{2}} e^{-v t}\left({ }_{t} p_{x}\right) d t=\int_{0}^{T_{2}-T_{1}} e^{-\int_{0}^{s}\left(v+\lambda_{x+t}\right) d t} d s \tag{70}
\end{equation*}
$$

cont'd

- the most general (analytic) annuity factor under GM:

$$
\begin{equation*}
\bar{a}_{x}\left(v, T_{1}, T_{2}, m, b\right):=\int_{T_{1}}^{T_{2}} e^{-v t}\left({ }_{t} p_{x}\right) d t=\int_{0}^{T_{2}-T_{1}} e^{-\int_{0}^{s}\left(v+\lambda_{x+t}\right) d t} d s \tag{70}
\end{equation*}
$$

- if you replace $\left({ }_{t} p_{x}\right)$ or λ_{x+t}, with the relevant Gompertz-Makeham version:

$$
\begin{align*}
\bar{a}_{x}\left(v, T_{1}, T_{2}, \lambda, m, b\right) & =\frac{b}{\eta} \Gamma\left[-(\lambda+v) b, e^{\left(\frac{x-m+T_{1}}{b}\right)}\right] \\
& -\frac{b}{\eta} \Gamma\left[-(\lambda+v) b, e^{\left(\frac{x-m+T_{2}}{b}\right)}\right] \tag{71}
\end{align*}
$$

cont'd

- the most general (analytic) annuity factor under GM:

$$
\begin{equation*}
\bar{a}_{x}\left(v, T_{1}, T_{2}, m, b\right):=\int_{T_{1}}^{T_{2}} e^{-v t}\left({ }_{t} p_{x}\right) d t=\int_{0}^{T_{2}-T_{1}} e^{-\int_{0}^{s}\left(v+\lambda_{x+t}\right) d t} d s \tag{70}
\end{equation*}
$$

- if you replace $\left({ }_{t} p_{x}\right)$ or λ_{x+t}, with the relevant Gompertz-Makeham version:

$$
\begin{align*}
\bar{a}_{x}\left(v, T_{1}, T_{2}, \lambda, m, b\right) & =\frac{b}{\eta} \Gamma\left[-(\lambda+v) b, e^{\left(\frac{x-m+T_{1}}{b}\right)}\right] \\
& -\frac{b}{\eta} \Gamma\left[-(\lambda+v) b, e^{\left(\frac{x-m+T_{2}}{b}\right)}\right] \tag{71}
\end{align*}
$$

where

$$
\begin{equation*}
\eta=\exp \left[(m-x)(\lambda+v)-\exp \left(\frac{x-m}{b}\right)\right] \tag{72}
\end{equation*}
$$

The Problem of Retirement Income

- Goal: to derive the optimal consumption and savings policy once you no longer have any human capital left and must live off your financial capital and pension income

The Problem of Retirement Income

- Goal: to derive the optimal consumption and savings policy once you no longer have any human capital left and must live off your financial capital and pension income
- the classical lifecycle model (LCM):

$$
\begin{equation*}
\max _{c_{t}} E\left[\int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) 1_{\left\{t \leq T_{x}\right\}} d t\right] \tag{73}
\end{equation*}
$$

where $\mathbf{T}_{x} \leq \bar{D}$ is the remaining lifetime satisfying $\operatorname{Pr}\left[\mathbf{T}_{x}>t\right]={ }_{t} p_{x}$

The Problem of Retirement Income

- Goal: to derive the optimal consumption and savings policy once you no longer have any human capital left and must live off your financial capital and pension income
- the classical lifecycle model (LCM):

$$
\begin{equation*}
\max _{c_{t}} E\left[\int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) 1_{\left\{t \leq T_{x}\right\}} d t\right] \tag{73}
\end{equation*}
$$

where $\mathbf{T}_{x} \leq \bar{D}$ is the remaining lifetime satisfying $\operatorname{Pr}\left[\mathbf{T}_{x}>t\right]={ }_{t} p_{x}$

- we re-write the value function:

$$
\max _{c_{t}} \int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right) E\left[1_{\left\{t \leq T_{x}\right\}}\right] d t=\max _{c_{t}} \int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right)\left({ }_{t} p_{x}\right) d t
$$

since we assume independence between optimal consumption c_{t}^{*} and the lifetime indicator function $1_{\left\{t \leq T_{x}\right\}}$

cont'd

- the wealth (budget) constraint:

$$
\begin{equation*}
\dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+\pi_{0}-c_{t} \quad \text { with B.C. } \quad F_{0} \geq 0, F_{\bar{D}}=0 \tag{74}
\end{equation*}
$$

where π_{0} is the constant income rate (pension annuity)

cont'd

- the wealth (budget) constraint:

$$
\begin{equation*}
\dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+\pi_{0}-c_{t} \quad \text { with B.C. } \quad F_{0} \geq 0, F_{\bar{D}}=0 \tag{74}
\end{equation*}
$$

where π_{0} is the constant income rate (pension annuity)

- the valuation rate $v_{t}=v(t, F)$ is a general interest function defined by:

$$
v_{t}=\left\{\begin{array}{cc}
v+\xi \lambda_{x+t} & F_{t} \geq 0 \tag{75}\\
\hat{v}+\lambda_{x+t}, & F_{t}<0
\end{array}\right.
$$

which imposes a no-borrowing constraint when $\hat{v}=\infty$

cont'd

- the wealth (budget) constraint:

$$
\begin{equation*}
\dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+\pi_{0}-c_{t} \quad \text { with B.C. } \quad F_{0} \geq 0, F_{\bar{D}}=0 \tag{74}
\end{equation*}
$$

where π_{0} is the constant income rate (pension annuity)

- the valuation rate $v_{t}=v(t, F)$ is a general interest function defined by:

$$
v_{t}=\left\{\begin{array}{cc}
v+\xi \lambda_{x+t} & F_{t} \geq 0 \tag{75}\\
\hat{v}+\lambda_{x+t}, & F_{t}<0
\end{array}\right.
$$

which imposes a no-borrowing constraint when $\hat{v}=\infty$

- Note: our model allows the ability to invest in actuarial notes which are instantaneous life annuities i.e. you pool your money with other people of the exact same age and the survivors gain the interest of the deceased

Euler-Lagrange Equation

- problem set-up in standard form:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t \tag{76}
\end{equation*}
$$

where $\phi\left(t, F_{t}, \dot{F}_{t}\right)=e^{-\rho t} u\left(v_{t} F_{t}-\dot{F}_{t}+\pi_{0}\right)_{t} p_{x}$

Euler-Lagrange Equation

- problem set-up in standard form:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t \tag{76}
\end{equation*}
$$

where $\phi\left(t, F_{t}, \dot{F}_{t}\right)=e^{-\rho t} u\left(v_{t} F_{t}-\dot{F}_{t}+\pi_{0}\right)_{t} p_{x}$

- the Euler-Lagrange equation:

$$
\begin{equation*}
\frac{d}{d t}\left(v_{t} F_{t}-\dot{F}_{t}\right)=k_{t}\left(\pi_{0}+v_{t} F_{t}-\dot{F}_{t}\right) \tag{77}
\end{equation*}
$$

with given F_{0} and $F_{\bar{D}}=0$, where $k_{t}=\left(v_{t}-\rho-\lambda_{x+t}\right) \gamma^{-1}$

Euler-Lagrange Equation

- problem set-up in standard form:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t \tag{76}
\end{equation*}
$$

where $\phi\left(t, F_{t}, \dot{F}_{t}\right)=e^{-\rho t} u\left(v_{t} F_{t}-\dot{F}_{t}+\pi_{0}\right)_{t} p_{x}$

- the Euler-Lagrange equation:

$$
\begin{equation*}
\frac{d}{d t}\left(v_{t} F_{t}-\dot{F}_{t}\right)=k_{t}\left(\pi_{0}+v_{t} F_{t}-\dot{F}_{t}\right) \tag{77}
\end{equation*}
$$

with given F_{0} and $F_{\bar{D}}=0$, where $k_{t}=\left(v_{t}-\rho-\lambda_{x+t}\right) \gamma^{-1}$

- when $v\left(t, F_{t}\right)=v$ during the entire interval $(0, \bar{D})$ and for $F_{t} \neq 0$, the optimal trajectory F_{t} must satisfy:

$$
\begin{equation*}
\ddot{F}_{t}-\left(k_{t}+v\right) \dot{F}_{t}+v k_{t} F_{t}=k_{t} \pi_{0} \tag{78}
\end{equation*}
$$

Euler-Lagrange Equation

- problem set-up in standard form:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t \tag{76}
\end{equation*}
$$

where $\phi\left(t, F_{t}, \dot{F}_{t}\right)=e^{-\rho t} u\left(v_{t} F_{t}-\dot{F}_{t}+\pi_{0}\right)_{t} p_{x}$

- the Euler-Lagrange equation:

$$
\begin{equation*}
\frac{d}{d t}\left(v_{t} F_{t}-\dot{F}_{t}\right)=k_{t}\left(\pi_{0}+v_{t} F_{t}-\dot{F}_{t}\right) \tag{77}
\end{equation*}
$$

with given F_{0} and $F_{\bar{D}}=0$, where $k_{t}=\left(v_{t}-\rho-\lambda_{x+t}\right) \gamma^{-1}$

- when $v\left(t, F_{t}\right)=v$ during the entire interval $(0, \bar{D})$ and for $F_{t} \neq 0$, the optimal trajectory F_{t} must satisfy:

$$
\begin{equation*}
\ddot{F}_{t}-\left(k_{t}+v\right) \dot{F}_{t}+v k_{t} F_{t}=k_{t} \pi_{0} \tag{78}
\end{equation*}
$$

- once F_{t} is found, we use the budget equation (74) to retrieve the optimal consumption rate function

Wealth Depletion

- Question: When wealth is depleted $F_{t}=0$, is it optimal to remain at zero wealth or should F_{t} become negative (debt)?

Wealth Depletion

- Question: When wealth is depleted $F_{t}=0$, is it optimal to remain at zero wealth or should F_{t} become negative (debt)?
- Answer: We apply Calculus of Variations to the objective function at $F_{t}=0$.

Wealth Depletion

- Question: When wealth is depleted $F_{t}=0$, is it optimal to remain at zero wealth or should F_{t} become negative (debt)?
- Answer: We apply Calculus of Variations to the objective function at $F_{t}=0$.
- let $J=\int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t$ and we have:

$$
\delta J=\int_{0}^{\bar{D}}\left(\phi_{F_{t}}-\frac{d}{d t} \phi_{\dot{F}_{t}}\right) \delta F_{t} d t=\int_{0}^{\bar{D}}\left(v_{t} \zeta_{t}+\dot{\zeta}_{t}\right) \delta F_{t} d t
$$

with $\phi_{F_{t}}=v_{t} \zeta_{t}, \quad \phi_{\dot{F}_{t}}=-\zeta_{t}$ and

$$
\begin{align*}
\zeta_{t} & =\exp \left(-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s\right) u^{\prime}\left(c_{t}\right) \\
& =\exp \left(-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s\right) c_{t}^{-\gamma} \tag{79}
\end{align*}
$$

Wealth Depletion

- Question: When wealth is depleted $F_{t}=0$, is it optimal to remain at zero wealth or should F_{t} become negative (debt)?
- Answer: We apply Calculus of Variations to the objective function at $F_{t}=0$.
- let $J=\int_{0}^{\bar{D}} \phi\left(t, F_{t}, \dot{F}_{t}\right) d t$ and we have:

$$
\delta J=\int_{0}^{\bar{D}}\left(\phi_{F_{t}}-\frac{d}{d t} \phi_{\dot{F}_{t}}\right) \delta F_{t} d t=\int_{0}^{\bar{D}}\left(v_{t} \zeta_{t}+\dot{\zeta}_{t}\right) \delta F_{t} d t
$$

with $\phi_{F_{t}}=v_{t} \zeta_{t}, \quad \phi_{\dot{F}_{t}}=-\zeta_{t}$ and

$$
\begin{align*}
\zeta_{t} & =\exp \left(-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s\right) u^{\prime}\left(c_{t}\right) \\
& =\exp \left(-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s\right) c_{t}^{-\gamma} \tag{79}
\end{align*}
$$

- note that v_{t} (defined in equation (75)) is not smooth at $F_{t}=0 \Rightarrow \delta F_{t}$ is one-sided when $F_{t}=0$

cont'd

- J reaches maximum $\Leftrightarrow \delta J \leq 0$ for both $\delta F_{t}>0$ and $\delta F_{t}<0$, hence:

$$
\dot{\zeta}_{t}+v_{t} \zeta_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{80}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

cont'd

- J reaches maximum $\Leftrightarrow \delta J \leq 0$ for both $\delta F_{t}>0$ and $\delta F_{t}<0$, hence:

$$
\dot{\zeta}_{t}+v_{t} \zeta_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{80}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

- from equation (79), we know $\zeta_{t}>0$ and we obtain:

$$
\frac{d}{d t} \log \zeta_{t}+v_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{81}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

cont'd

- J reaches maximum $\Leftrightarrow \delta J \leq 0$ for both $\delta F_{t}>0$ and $\delta F_{t}<0$, hence:

$$
\dot{\zeta}_{t}+v_{t} \zeta_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{80}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

- from equation (79), we know $\zeta_{t}>0$ and we obtain:

$$
\frac{d}{d t} \log \zeta_{t}+v_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{81}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

- since $\log \zeta_{t}=-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s-\gamma \log c_{t}$:

$$
\begin{equation*}
\frac{d}{d t} \log \zeta_{t}=-\left(\rho+\lambda_{x+t}\right)-\gamma \frac{d}{d t} \log c_{t} \tag{82}
\end{equation*}
$$

cont'd

- J reaches maximum $\Leftrightarrow \delta J \leq 0$ for both $\delta F_{t}>0$ and $\delta F_{t}<0$, hence:

$$
\dot{\zeta}_{t}+v_{t} \zeta_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{80}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

- from equation (79), we know $\zeta_{t}>0$ and we obtain:

$$
\frac{d}{d t} \log \zeta_{t}+v_{t} \begin{cases}\geq 0, & \delta F_{t}<0 \tag{81}\\ \leq 0, & \delta F_{t}>0\end{cases}
$$

- since $\log \zeta_{t}=-\int_{0}^{t}\left(\rho+\lambda_{x+s}\right) d s-\gamma \log c_{t}$:

$$
\begin{equation*}
\frac{d}{d t} \log \zeta_{t}=-\left(\rho+\lambda_{x+t}\right)-\gamma \frac{d}{d t} \log c_{t} \tag{82}
\end{equation*}
$$

- combining equ's (81) and (82):

$$
\frac{d}{d t} \log c_{t} \begin{cases}\leq k_{t}, & \delta F_{t}<0 \tag{84}\\ \geq k_{t}, & \delta F_{t}>0\end{cases}
$$

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

- Note:

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

- Note:
- when $\xi<1$, the first inequality becomes valid over time (since λ_{x+t} is increasing in time)

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

- Note:
- when $\xi<1$, the first inequality becomes valid over time (since λ_{x+t} is increasing in time)
- validity of the second inequality depends on how large the borrowing rate, \hat{v} is relative to the discount rate ρ

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

- Note:
- when $\xi<1$, the first inequality becomes valid over time (since λ_{x+t} is increasing in time)
- validity of the second inequality depends on how large the borrowing rate, \hat{v} is relative to the discount rate ρ
- once the wealth is depleted, it stays depleted (due to λ_{x+t} increasing)

cont'd

- from equ's (75), (84) and $F_{t}=0$ (i.e. $c_{t}=\pi_{0}$) we get the optimality condition:

$$
\begin{equation*}
\frac{v-\rho+(\xi-1) \lambda_{x+t}}{\gamma} \leq 0 \leq \frac{\hat{v}-\rho}{\gamma} \tag{85}
\end{equation*}
$$

- Note:
- when $\xi<1$, the first inequality becomes valid over time (since λ_{x+t} is increasing in time)
- validity of the second inequality depends on how large the borrowing rate, \hat{v} is relative to the discount rate ρ
- once the wealth is depleted, it stays depleted (due to λ_{x+t} increasing)
- when $\xi=1$, wealth depletion is optimal if $v \leq \rho \leq \hat{v}$

Classifying Retirement Trajectories

- four wealth trajectories F_{t} emerge from the optimization model

cont'd

(1) regime I and II

- the wealth trajectory F_{t} begins at $F_{0}>0$ and might increase initially (I) or decline over the entire range (II)
- wealth F_{t} depleted (only) at $t=D$

cont'd

(1) regime I and II

- the wealth trajectory F_{t} begins at $F_{0}>0$ and might increase initially (I) or decline over the entire range (II)
- wealth F_{t} depleted (only) at $t=D$
(2) regime III
- F_{t} declines (rapidly) and hits zero prior to D
- we call this wealth depletion time (WDT) denoted by τ
- implies a consumption rate higher than I and II
- once wealth is depleted, the trajectory stays at $F_{t}=0$ for (τ, \bar{D})
- does not allow for positive $\dot{F}_{t} \Leftrightarrow$ investment wealth will always decline (or stay constant)

cont'd

(1) regime I and II

- the wealth trajectory F_{t} begins at $F_{0}>0$ and might increase initially
(I) or decline over the entire range (II)
- wealth F_{t} depleted (only) at $t=D$
(2) regime III
- F_{t} declines (rapidly) and hits zero prior to D
- we call this wealth depletion time (WDT) denoted by τ
- implies a consumption rate higher than I and II
- once wealth is depleted, the trajectory stays at $F_{t}=0$ for (τ, \bar{D})
- does not allow for positive $\dot{F}_{t} \Leftrightarrow$ investment wealth will always decline (or stay constant)
(3) regime IV
- wealth may or may not be depleted prior to $t=\bar{D}$
- the function F_{t} can take negative values
- F_{t} can reach a minimum value and then increases to hit zero again at $\tau_{2} \leq \bar{D}$ (the loan depletion time ($L D T$))

Economic Cases for the Observed Trajectories

Description	Parameters	$\pi_{0}=0$	$\pi_{0}>0$
Relatively Patient:	$0 \leq \rho<v$	$1 \mathrm{~A}=[\mathrm{I}, \mathrm{II}]$	$1 \mathrm{~B}=[\mathrm{III}, \mathrm{III}]$
Neutral Patience:	$\rho=v<\hat{v}$	$2 \mathrm{~A}=[\mathrm{II}]$	$2 \mathrm{~B}=[\mathrm{II}, \mathrm{III}]$
Relatively Impatient:	$v<\rho<\hat{v}$	$3 \mathrm{~A}=[\mathrm{II}]$	$3 \mathrm{~B}=[\mathrm{II}, \mathrm{III}]$
Extremely Impatient:	$v<\hat{v} \leq \rho$	$4 \mathrm{~A}=[\mathrm{II}]$	$4 \mathrm{~B}=[\mathrm{IV}]$

Economic Cases for the Observed Trajectories

Description	Parameters	$\pi_{0}=0$	$\pi_{0}>0$
Relatively Patient:	$0 \leq \rho<v$	$1 \mathrm{~A}=[\mathrm{I}, \mathrm{II}]$	$1 \mathrm{~B}=[\mathrm{III}, \mathrm{III}]$
Neutral Patience:	$\rho=v<\hat{v}$	$2 \mathrm{~A}=[\mathrm{II}]$	$2 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Relatively Impatient:	$v<\rho<\hat{v}$	$3 \mathrm{~A}=[\mathrm{II}]$	$3 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Extremely Impatient:	$v<\hat{v} \leq \rho$	$4 \mathrm{~A}=[\mathrm{II}]$	$4 \mathrm{~B}=[\mathrm{IV}]$

- Case 1A and B: situation in which optimal consumption rate would increase over time in the absence of longevity risk

Economic Cases for the Observed Trajectories

Description	Parameters	$\pi_{0}=0$	$\pi_{0}>0$
Relatively Patient:	$0 \leq \rho<v$	$1 \mathrm{~A}=[\mathrm{I}, \mathrm{II}]$	$1 \mathrm{~B}=[\mathrm{IIII}, \mathrm{III}]$
Neutral Patience:	$\rho=v<\hat{v}$	$2 \mathrm{~A}=[\mathrm{II}]$	$2 \mathrm{~B}=[\mathrm{II}, \mathrm{III}]$
Relatively Impatient:	$v<\rho<\hat{v}$	$3 \mathrm{~A}=[\mathrm{II}]$	$3 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Extremely Impatient:	$v<\hat{v} \leq \rho$	$4 \mathrm{~A}=[\mathrm{II}]$	$4 \mathrm{~B}=[\mathrm{IV}]$

- Case 1A and B: situation in which optimal consumption rate would increase over time in the absence of longevity risk
- Case 2A and B: would theoretically lead to a constant consumption profile over time were it not for the longevity risk (so we have declining consumption profile over time)

Economic Cases for the Observed Trajectories

Description	Parameters	$\pi_{0}=0$	$\pi_{0}>0$
Relatively Patient:	$0 \leq \rho<v$	$1 \mathrm{~A}=[\mathrm{I}, \mathrm{II}]$	$1 \mathrm{~B}=[\mathrm{III}, \mathrm{III}]$
Neutral Patience:	$\rho=v<\hat{v}$	$2 \mathrm{~A}=[\mathrm{II}]$	$2 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Relatively Impatient:	$v<\rho<\hat{v}$	$3 \mathrm{~A}=[\mathrm{II}]$	$3 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Extremely Impatient:	$v<\hat{v} \leq \rho$	$4 \mathrm{~A}=[\mathrm{II}]$	$4 \mathrm{~B}=[\mathrm{IV}]$

- Case 1A and B: situation in which optimal consumption rate would increase over time in the absence of longevity risk
- Case 2A and B: would theoretically lead to a constant consumption profile over time were it not for the longevity risk (so we have declining consumption profile over time)
- Case 3A and B: results in a more rapidly declining consumption rate compared to case 2 A and 2 B

Economic Cases for the Observed Trajectories

Description	Parameters	$\pi_{0}=0$	$\pi_{0}>0$
Relatively Patient:	$0 \leq \rho<v$	$1 \mathrm{~A}=[\mathrm{I}, \mathrm{II}]$	$1 \mathrm{~B}=[\mathrm{III}, \mathrm{III}]$
Neutral Patience:	$\rho=v<\hat{v}$	$2 \mathrm{~A}=[\mathrm{II}]$	$2 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Relatively Impatient:	$v<\rho<\hat{v}$	$3 \mathrm{~A}=[\mathrm{II}]$	$3 \mathrm{~B}=[\mathrm{II}, \mathrm{II}]$
Extremely Impatient:	$v<\hat{v} \leq \rho$	$4 \mathrm{~A}=[\mathrm{II}]$	$4 \mathrm{~B}=[\mathrm{IV}]$

- Case 1A and B: situation in which optimal consumption rate would increase over time in the absence of longevity risk
- Case 2A and B: would theoretically lead to a constant consumption profile over time were it not for the longevity risk (so we have declining consumption profile over time)
- Case 3A and B: results in a more rapidly declining consumption rate compared to case 2 A and 2 B
- Case 4A and B: retiree's extreme impatience, results in a very rapid and steep decline of the consumption rate

Explicit Solution: Exponential Remaining Lifetime

- let $\lambda_{x+t}=\lambda$ and $v\left(t, F_{t}\right)=v$

Explicit Solution: Exponential Remaining Lifetime

- let $\lambda_{x+t}=\lambda$ and $v\left(t, F_{t}\right)=v$
- solve the ODE by the method of undetermined coefficients:

$$
\begin{equation*}
\ddot{F}_{t}+(k-v) \dot{F}_{t}-v k F_{t}=k \pi_{0} \quad \text { where } \quad k=(\lambda+\rho-v) / \gamma \tag{86}
\end{equation*}
$$

Explicit Solution: Exponential Remaining Lifetime

- let $\lambda_{x+t}=\lambda$ and $v\left(t, F_{t}\right)=v$
- solve the ODE by the method of undetermined coefficients:

$$
\begin{equation*}
\ddot{F}_{t}+(k-v) \dot{F}_{t}-v k F_{t}=k \pi_{0} \quad \text { where } \quad k=(\lambda+\rho-v) / \gamma \tag{86}
\end{equation*}
$$

- the general solution is:

$$
\begin{equation*}
F_{t}=K_{1} e^{-k t}+K_{2} e^{v t}-\frac{\pi_{0}}{v} \tag{87}
\end{equation*}
$$

Explicit Solution: Exponential Remaining Lifetime

- let $\lambda_{x+t}=\lambda$ and $v\left(t, F_{t}\right)=v$
- solve the ODE by the method of undetermined coefficients:

$$
\begin{equation*}
\ddot{F}_{t}+(k-v) \dot{F}_{t}-v k F_{t}=k \pi_{0} \quad \text { where } \quad k=(\lambda+\rho-v) / \gamma \tag{86}
\end{equation*}
$$

- the general solution is:

$$
\begin{equation*}
F_{t}=K_{1} e^{-k t}+K_{2} e^{v t}-\frac{\pi_{0}}{v} \tag{87}
\end{equation*}
$$

- the solution implies that the optimal consumption function is:

$$
\begin{equation*}
c_{t}^{*}=v F_{t}-\dot{F}_{t}+\pi_{0}=(v+k) K_{1} e^{-k t} \tag{88}
\end{equation*}
$$

Explicit Solution: Exponential Remaining Lifetime

- let $\lambda_{x+t}=\lambda$ and $v\left(t, F_{t}\right)=v$
- solve the ODE by the method of undetermined coefficients:

$$
\begin{equation*}
\ddot{F}_{t}+(k-v) \dot{F}_{t}-v k F_{t}=k \pi_{0} \quad \text { where } \quad k=(\lambda+\rho-v) / \gamma \tag{86}
\end{equation*}
$$

- the general solution is:

$$
\begin{equation*}
F_{t}=K_{1} e^{-k t}+K_{2} e^{v t}-\frac{\pi_{0}}{v} \tag{87}
\end{equation*}
$$

- the solution implies that the optimal consumption function is:

$$
\begin{equation*}
c_{t}^{*}=v F_{t}-\dot{F}_{t}+\pi_{0}=(v+k) K_{1} e^{-k t} \tag{88}
\end{equation*}
$$

- using the B.C.'s $F_{0}=M>0$ and $F_{\bar{D}}=0$, we get:

$$
\begin{align*}
& K_{1}=\left(M+\pi_{0} / v\right)\left(1+\frac{e^{-k \bar{D}}}{e^{v \bar{D}}-e^{-k \bar{D}}}\right)-\left(\frac{\pi_{0} / v}{e^{v \bar{D}}-e^{-k \bar{D}}}\right) \tag{91}\\
& K_{2}=\frac{\pi_{0} / v-\left(M+\pi_{0} / v\right) e^{-k \bar{D}}}{e^{v \bar{D}}-e^{-k \bar{D}}} \tag{92}
\end{align*}
$$

Examples: Exponential Remaining Lifetime

- EXAMPLE 1

$\rho=5 \%, \gamma=4, \lambda=8 \%$ (equivalent to a life expectancy of 12.5 yrs), $v=4 \%$, pension income $\pi_{0}=\$ 1, F_{0}=M=10, \bar{D}=50 \mathrm{yrs}$, $k=0.0225, K_{1}=33.069594$ and $K_{2}=1.9304055$

Examples: Exponential Remaining Lifetime

- EXAMPLE 1

$\rho=5 \%, \gamma=4, \lambda=8 \%$ (equivalent to a life expectancy of 12.5 yrs),
$v=4 \%$, pension income $\pi_{0}=\$ 1, F_{0}=M=10, \bar{D}=50 \mathrm{yrs}$,
$k=0.0225, K_{1}=33.069594$ and $K_{2}=1.9304055$

- wealth trajectory is convex and hits zero before $t=50$, at $\tau=21.313$

$$
\begin{equation*}
F_{t}=(33.069594) e^{-(0.0225) t}+(1.9304055) e^{(0.04) t}-25 \tag{93}
\end{equation*}
$$

Examples: Exponential Remaining Lifetime

- EXAMPLE 1

$\rho=5 \%, \gamma=4, \lambda=8 \%$ (equivalent to a life expectancy of 12.5 yrs),
$v=4 \%$, pension income $\pi_{0}=\$ 1, F_{0}=M=10, \bar{D}=50 \mathrm{yrs}$,
$k=0.0225, K_{1}=33.069594$ and $K_{2}=1.9304055$

- wealth trajectory is convex and hits zero before $t=50$, at $\tau=21.313$

$$
\begin{equation*}
F_{t}=(33.069594) e^{-(0.0225) t}+(1.9304055) e^{(0.04) t}-25 \tag{93}
\end{equation*}
$$

- the optimal consumption rate is:

$$
\begin{equation*}
c_{t}^{*}=(0.04+0.0225)(33.069594) e^{-(0.025) t}=(2.0668496) e^{-(0.025) t} \tag{94}
\end{equation*}
$$

Examples: Exponential Remaining Lifetime

- EXAMPLE 1

$\rho=5 \%, \gamma=4, \lambda=8 \%$ (equivalent to a life expectancy of 12.5 yrs),
$v=4 \%$, pension income $\pi_{0}=\$ 1, F_{0}=M=10, \bar{D}=50 \mathrm{yrs}$,
$k=0.0225, K_{1}=33.069594$ and $K_{2}=1.9304055$

- wealth trajectory is convex and hits zero before $t=50$, at $\tau=21.313$

$$
\begin{equation*}
F_{t}=(33.069594) e^{-(0.0225) t}+(1.9304055) e^{(0.04) t}-25 \tag{93}
\end{equation*}
$$

- the optimal consumption rate is:

$$
\begin{equation*}
c_{t}^{*}=(0.04+0.0225)(33.069594) e^{-(0.025) t}=(2.0668496) e^{-(0.025) t} \tag{94}
\end{equation*}
$$

- EXAMPLE 2
changing only $\rho=3 \%$ and $\lambda=0.5 \%$

Examples: Exponential Remaining Lifetime

- EXAMPLE 1

$\rho=5 \%, \gamma=4, \lambda=8 \%$ (equivalent to a life expectancy of 12.5 yrs),
$v=4 \%$, pension income $\pi_{0}=\$ 1, F_{0}=M=10, \bar{D}=50 \mathrm{yrs}$,
$k=0.0225, K_{1}=33.069594$ and $K_{2}=1.9304055$

- wealth trajectory is convex and hits zero before $t=50$, at $\tau=21.313$

$$
\begin{equation*}
F_{t}=(33.069594) e^{-(0.0225) t}+(1.9304055) e^{(0.04) t}-25 \tag{93}
\end{equation*}
$$

- the optimal consumption rate is:

$$
\begin{equation*}
c_{t}^{*}=(0.04+0.0225)(33.069594) e^{-(0.025) t}=(2.0668496) e^{-(0.025) t} \tag{94}
\end{equation*}
$$

- EXAMPLE 2
changing only $\rho=3 \%$ and $\lambda=0.5 \%$
- F_{t} is concave and does not hit zero before $t=50$

$$
\begin{equation*}
F_{t}=(36.938048) e^{(0.00125) t}-(1.9380483) e^{(0.04) t}-25 \tag{95}
\end{equation*}
$$

Explicit Solution: Gompertz Mortality

- for Gompertz law of mortality, the survival probability:

$$
\begin{equation*}
\left({ }_{t} p_{x}\right)=\exp \left\{b \lambda_{0}\left(1-e^{t / b}\right)\right\} \tag{96}
\end{equation*}
$$

Explicit Solution: Gompertz Mortality

- for Gompertz law of mortality, the survival probability:

$$
\begin{equation*}
\left({ }_{t} p_{x}\right)=\exp \left\{b \lambda_{0}\left(1-e^{t / b}\right)\right\} \tag{96}
\end{equation*}
$$

where $\lambda_{0}=\exp ((x-m) / b) / b$ and x denotes the age at time 0

Explicit Solution: Gompertz Mortality

- for Gompertz law of mortality, the survival probability:

$$
\begin{equation*}
\left({ }_{t} p_{x}\right)=\exp \left\{b \lambda_{0}\left(1-e^{t / b}\right)\right\} \tag{96}
\end{equation*}
$$

where $\lambda_{0}=\exp ((x-m) / b) / b$ and x denotes the age at time 0

- from the budget equation (74), we have:

$$
\begin{align*}
& c_{t}=v F_{t}-\dot{F}_{t}+\pi_{0} \tag{97}\\
& \dot{c}_{t}=v \dot{F}_{t}-\ddot{F}_{t} \tag{98}
\end{align*}
$$

Explicit Solution: Gompertz Mortality

- for Gompertz law of mortality, the survival probability:

$$
\begin{equation*}
\left({ }_{t} p_{x}\right)=\exp \left\{b \lambda_{0}\left(1-e^{t / b}\right)\right\} \tag{96}
\end{equation*}
$$

where $\lambda_{0}=\exp ((x-m) / b) / b$ and x denotes the age at time 0

- from the budget equation (74), we have:

$$
\begin{align*}
& c_{t}=v F_{t}-\dot{F}_{t}+\pi_{0} \tag{97}\\
& \dot{c}_{t}=v \dot{F}_{t}-\ddot{F}_{t} \tag{98}
\end{align*}
$$

- after rearranging equation (78):

$$
\begin{equation*}
\ddot{F}_{t}-v \dot{F}_{t}+k_{t}\left(v F_{t}-\dot{F}_{t}\right)=-k_{t} \pi_{0} \tag{99}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

- the optimal solution to equation (100) is:

$$
\begin{equation*}
c_{t}^{*}=c_{0}^{*} e^{\int_{0}^{t} k_{s} d s} \tag{101}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

- the optimal solution to equation (100) is:

$$
\begin{equation*}
c_{t}^{*}=c_{0}^{*} e^{\int_{0}^{t} k_{s} d s}=c_{0}^{*} e^{\int_{0}^{t}\left(\frac{v-\rho-\lambda_{x}+s}{\gamma}\right) d s} \tag{101}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

- the optimal solution to equation (100) is:

$$
\begin{equation*}
c_{t}^{*}=c_{0}^{*} e^{\int_{0}^{t} k_{s} d s}=c_{0}^{*} e^{\int_{0}^{t}\left(\frac{v-\rho-\lambda_{x}+s}{\gamma}\right) d s}=c_{0}^{*} e^{\left(\frac{v-\rho}{\gamma}\right) t}\left({ }_{t} p_{x}\right)^{1 / \gamma} \tag{101}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

- the optimal solution to equation (100) is:

$$
\begin{equation*}
c_{t}^{*}=c_{0}^{*} e^{\int_{0}^{t} k_{s} d s}=c_{0}^{*} e^{\int_{0}^{t}\left(\frac{v-\rho-\lambda_{x}+s}{\gamma}\right) d s}=c_{0}^{*} e^{\left(\frac{v-\rho}{\gamma}\right) t}\left({ }_{t} p_{x}\right)^{1 / \gamma} \tag{101}
\end{equation*}
$$

- the optimal trajectory of wealth after substituting (101) into (97) is:

$$
\begin{equation*}
\dot{F}_{t}-v F_{t}-\pi_{0}+c_{0}^{*} e^{\left(\frac{v-\rho}{\gamma}\right) t}\left({ }_{t} p_{x}\right)^{1 / \gamma}=0 \tag{102}
\end{equation*}
$$

cont'd

- after substituting equations (97) and (98) into (99):

$$
\begin{equation*}
k_{t} c_{t}-\dot{c}_{t}=0 \tag{100}
\end{equation*}
$$

- the optimal solution to equation (100) is:

$$
\begin{equation*}
c_{t}^{*}=c_{0}^{*} e^{\int_{0}^{t} k_{s} d s}=c_{0}^{*} e^{\int_{0}^{t}\left(\frac{v-\rho-\lambda_{x}+s}{\gamma}\right) d s}=c_{0}^{*} e^{\left(\frac{v-\rho}{\gamma}\right) t}\left({ }_{t} p_{x}\right)^{1 / \gamma} \tag{101}
\end{equation*}
$$

- the optimal trajectory of wealth after substituting (101) into (97) is:

$$
\begin{equation*}
\dot{F}_{t}-v F_{t}-\pi_{0}+c_{0}^{*} e^{\left(\frac{v-\rho}{\gamma}\right) t}\left({ }_{t} p_{x}\right)^{1 / \gamma}=0 \tag{102}
\end{equation*}
$$

- after algebraic manipulations and the use of equation (71):

$$
\begin{equation*}
F_{t}=\left(F_{0}+\frac{\pi}{v}\right) e^{v t}-\bar{a}_{x}(v-k, 0, \tau, \lambda, \hat{m}, b) c_{0}^{*} e^{v t}-\frac{\pi_{0}}{v} \tag{104}
\end{equation*}
$$

where $\hat{m}=m+b \ln \gamma$

cont'd

- using the B.C. $F_{\tau}=0$:

$$
\begin{equation*}
c_{0}^{*}=\frac{\left(F_{0}+\pi_{0} / v\right) e^{v \tau}-\pi_{0} / v}{\bar{a}_{x}(v-k, 0, \tau, \lambda, \hat{m}, b) e^{v \tau}} \tag{105}
\end{equation*}
$$

where τ is a wealth depletion time (WDT)

cont'd

- using the B.C. $F_{\tau}=0$:

$$
\begin{equation*}
c_{0}^{*}=\frac{\left(F_{0}+\pi_{0} / v\right) e^{v \tau}-\pi_{0} / v}{\bar{a}_{x}(v-k, 0, \tau, \lambda, \hat{m}, b) e^{v \tau}} \tag{105}
\end{equation*}
$$

where τ is a wealth depletion time (WDT)

- substituting equation (105) into (101) and setting $c_{\tau}^{*}=\pi_{0}$, we obtain an equation for τ :

$$
\begin{equation*}
\left(F_{0}+\frac{\pi_{0}}{v}\right) e^{v \tau}-\frac{\pi_{0}}{v}=\pi_{0} \bar{a}_{x}(v-k, 0, \tau, \lambda, \hat{m}, b) e^{(v-k) \tau} \tag{106}
\end{equation*}
$$

Back to Working Years

- We expand the LCM to include wages during the working years (and hence the human capital).

Back to Working Years

- We expand the LCM to include wages during the working years (and hence the human capital).
- we want c_{t} such that:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right)\left({ }_{t} p_{x}\right) d t \tag{107}
\end{equation*}
$$

Back to Working Years

- We expand the LCM to include wages during the working years (and hence the human capital).
- we want c_{t} such that:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right)\left({ }_{t} p_{x}\right) d t \tag{107}
\end{equation*}
$$

- the wealth constraint is given by:

$$
\begin{equation*}
\dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+w_{t}+b_{t}-c_{t} \quad \text { and } \quad F_{0}=F_{\bar{D}}=0 \tag{108}
\end{equation*}
$$

Back to Working Years

- We expand the LCM to include wages during the working years (and hence the human capital).
- we want c_{t} such that:

$$
\begin{equation*}
\max _{c_{t}} \int_{0}^{\bar{D}} e^{-\rho t} u\left(c_{t}\right)\left({ }_{t} p_{x}\right) d t \tag{107}
\end{equation*}
$$

- the wealth constraint is given by:

$$
\begin{equation*}
\dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+w_{t}+b_{t}-c_{t} \quad \text { and } \quad F_{0}=F_{\bar{D}}=0 \tag{108}
\end{equation*}
$$

- the wage function w_{t}, pension income b_{t} and the valuation rate v are as follows:

$$
w_{t}:=\left\{\begin{array}{cc}
w_{0} \exp (\rho t) ; & 0 \leq t \leq \bar{R} \\
0 ; & t>\bar{R}
\end{array}\right.
$$

$$
b_{t}:=\left\{\begin{array}{cl}
0 ; & t \leq \bar{R} \\
\pi_{0} ; & t>\bar{R}
\end{array} \quad v\left(t, F_{t}\right)=\left\{\begin{array}{cc}
v+\xi \lambda_{x+t} ; & F_{t} \geq 0 \\
\hat{v}+\lambda_{x+t} ; & F_{t}<0
\end{array}\right.\right.
$$

cont'd

- we assume $\xi=1$

cont'd

- we assume $\xi=1$
- the optimal consumption rate is a combination of three possibilities: either c_{t}^{*} equals the wage w_{t}, or the pension income π_{0}, or is the solution of the $\mathrm{E}-\mathrm{L}$ equation

$$
\begin{align*}
& \dot{\zeta}_{t}=-v\left(t, F_{t}\right) \zeta_{t}, \quad c_{t}^{*}=e^{-\frac{\rho}{\gamma} t} \zeta_{t}^{-\frac{1}{\gamma}} \tag{110}\\
& \dot{F}_{t}=v\left(t, F_{t}\right) F_{t}+w_{t}+b_{t}-c_{t}^{*} \tag{111}
\end{align*}
$$

with $F_{0}=F_{\bar{D}}=0$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $\bar{R} \leq t \leq \bar{D}$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $\bar{R} \leq t \leq \bar{D}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}<0$ for $0<t<\tau$ and $F_{t}>0$ for $\tau<t<\bar{D}$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $\bar{R} \leq t \leq \bar{D}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}<0$ for $0<t<\tau$ and $F_{t}>0$ for $\tau<t<\bar{D}$

Case 1: $\tau<\bar{R}$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $\bar{R} \leq t \leq \bar{D}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}<0$ for $0<t<\tau$ and $F_{t}>0$ for $\tau<t<\bar{D}$

Case 1: $\tau<\bar{R}$

- first, we have $c_{t}^{*}=c_{0}^{*} \exp (\hat{k} t)$ and:

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\frac{e^{-(\hat{v}-g) t}-1}{\hat{v}-g}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-1}{\hat{v}-\hat{k}} \tag{112}
\end{equation*}
$$

for $0<t<\tau$

Relatively Patient Individual $(k \leq \hat{k}<g)$

- when $\bar{R}=\bar{D} \Rightarrow F_{t}<0$ for $0<t<\bar{R}$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $\bar{R} \leq t \leq \bar{D}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}<0$ for $0<t<\tau$ and $F_{t}>0$ for $\tau<t<\bar{D}$

Case 1: $\tau<\bar{R}$

- first, we have $c_{t}^{*}=c_{0}^{*} \exp (\hat{k} t)$ and:

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\frac{e^{-(\hat{v}-g) t}-1}{\hat{v}-g}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-1}{\hat{v}-\hat{k}} \tag{112}
\end{equation*}
$$

for $0<t<\tau$

- next, we have $c_{t}^{*}=\hat{c}_{0}^{*} \exp (k t)$ and:

$$
\begin{equation*}
e^{-v t} F_{t}=-\frac{e^{-(v-g) t}-e^{-(v-g) \tau}}{v-g}+\hat{c}_{0}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \tau}}{v-k} \tag{113}
\end{equation*}
$$

for $\tau<t<\bar{R}$

cont'd

- for $\bar{R}<t<\bar{D}$

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}_{0}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{114}
\end{equation*}
$$

cont'd

- for $\bar{R}<t<\bar{D}$

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}_{0}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{114}
\end{equation*}
$$

- the value of τ is the root of the function:

$$
\begin{align*}
f(\tau) & =\hat{c}_{0}^{*} \frac{e^{-(v-k) \tau}-e^{-(v-k) \bar{D}}}{v-k}+\frac{e^{-(v-g) \bar{R}}-e^{-(v-g) \tau}}{v-g} \\
& -\pi_{0} \frac{e^{-v \bar{R}}-e^{-v \bar{D}}}{v} \tag{115}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{c}_{0}^{*}=c_{0}^{*} e^{(\hat{k}-k) \tau}, \quad c_{0}^{*}=\frac{\hat{v}-\hat{k}}{\hat{v}-g} \frac{e^{-(\hat{v}-g) \tau}-1}{e^{-(\hat{v}-\hat{k}) \tau}-1} \tag{116}
\end{equation*}
$$

Example: $\hat{k}=2.5 \%, g=3.5 \%, v=6 \%, \hat{v}=10.5 \%, \rho=3 \%, \gamma=3$, $\bar{R}=35, \bar{D}=60$ and $\pi_{0}=0.25 \Rightarrow$ it's optimal to borrow for up to $\tau=14.85$ years

Figure 13.2. Wealth vs. Consumption (Case A)

cont'd

Case 2: $\tau>\bar{R}$

- first, we have $c_{t}^{*}=c_{0}^{*} \exp (\hat{k} t)$ and

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\frac{e^{-(\hat{v}-g) t}-1}{\hat{v}-g}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-1}{\hat{v}-\hat{k}} \tag{117}
\end{equation*}
$$

for $0<t<\bar{R}$, and

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\pi_{0} \frac{e^{-\hat{v} t}-e^{-\hat{v} \tau}}{\hat{v}}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-e^{-(\hat{v}-\hat{k}) \tau}}{\hat{v}-\hat{k}} \tag{118}
\end{equation*}
$$

for $\bar{R}<t<\tau$

cont'd

Case 2: $\tau>\bar{R}$

- first, we have $c_{t}^{*}=c_{0}^{*} \exp (\hat{k} t)$ and

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\frac{e^{-(\hat{v}-g) t}-1}{\hat{v}-g}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-1}{\hat{v}-\hat{k}} \tag{117}
\end{equation*}
$$

for $0<t<\bar{R}$, and

$$
\begin{equation*}
e^{-\hat{v} t} F_{t}=-\pi_{0} \frac{e^{-\hat{v} t}-e^{-\hat{v} \tau}}{\hat{v}}+c_{0}^{*} \frac{e^{-(\hat{v}-\hat{k}) t}-e^{-(\hat{v}-\hat{k}) \tau}}{\hat{v}-\hat{k}} \tag{118}
\end{equation*}
$$

for $\bar{R}<t<\tau$

- next, we have $c_{t}^{*}=\hat{c}^{*} \exp (k t)$ and

$$
\begin{equation*}
e^{-r t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{119}
\end{equation*}
$$

for $\tau<t<\bar{D}$

cont'd

- the value of τ is the root of:

$$
\begin{equation*}
f(\tau)=\hat{c}_{0}^{*} \frac{e^{-(v-k) \tau}-e^{-(v-k) \bar{D}}}{v-k}-\pi_{0} \frac{e^{-v \tau}-e^{-v \bar{D}}}{v} \tag{120}
\end{equation*}
$$

where

$$
c_{0}^{*}=\frac{\hat{v}-\hat{k}}{e^{-(\hat{v}-\hat{k}) \tau}-1}\left(\frac{e^{-(\hat{v}-g) \tau}-1}{\hat{v}-g}-P \frac{e^{-\hat{v} \bar{R}}-e^{-\hat{v} \tau}}{\hat{v}}\right)
$$

and

$$
\hat{c}^{*}=c_{0}^{*} e^{(\hat{k}-\hat{v}) \tau}
$$

Example: $\pi_{0}=3.25$ and fix other parameters as in Fig. $13.2 \Rightarrow$ it's optimal to borrow for up to $\tau=39.43$ years

Figure 13.3. Wealth vs. Consumption (Case B)

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $t \geq \bar{R}$

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $t \geq \bar{R}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}=0$ for $t<\tau$ and $F_{t}>0$ for $t>\tau$

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $t \geq \bar{R}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}=0$ for $t<\tau$ and $F_{t}>0$ for $t>\tau$

Case 1: $\tau<\bar{R}$

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $t \geq \bar{R}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}=0$ for $t<\tau$ and $F_{t}>0$ for $t>\tau$

Case 1: $\tau<\bar{R}$

- first, we have $c_{t}^{*}=\exp (g t)$ and $F_{t}=0$ for $0<t<\tau$

Relatively Impatient Individual $(k \leq g \leq \hat{k})$

- when $\bar{R}=\bar{D} \Rightarrow$ one simply consumes income and maintains $F_{t}=0$
- when $\bar{R}<\bar{D}$ and $\pi_{0}=0 \Rightarrow F_{t}>0$ for $t \geq \bar{R}$
- for $\pi_{0}<\exp (g \bar{R}) \Rightarrow F_{t}=0$ for $t<\tau$ and $F_{t}>0$ for $t>\tau$

Case 1: $\tau<\bar{R}$

- first, we have $c_{t}^{*}=\exp (g t)$ and $F_{t}=0$ for $0<t<\tau$
- next, we have $c_{t}^{*}=\hat{c}^{*} \exp (k t)$ and:

$$
\begin{equation*}
e^{-v t} F_{t}=-\frac{e^{-(v-g) t}-e^{-(v-g) \tau}}{v-g}+\hat{c}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \tau}}{v-k} \tag{122}
\end{equation*}
$$

for $\tau<t<\bar{R}$, and

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{123}
\end{equation*}
$$

for $\bar{R}<t<\bar{D}$

cont'd

- the value of τ is the root of the function:

$$
\begin{align*}
f(\tau) & =\hat{c}^{*} \frac{e^{-(v-k) \tau}-e^{-(v-k) \bar{D}}}{v-k}+\frac{e^{-(v-g) \bar{R}}-e^{-(v-g) \tau}}{v-g} \\
& -\pi_{0} \frac{e^{-v \bar{R}}-e^{-v \bar{D}}}{v} \tag{124}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{c}^{*}=e^{(g-k) \tau} \tag{125}
\end{equation*}
$$

Example: $\pi_{0}=0.25, \hat{v}=15 \%, \hat{k}=4 \%$ and fix other parameters as in Fig. $13.2 \Rightarrow$ it's optimal to borrow for up to $\tau=11.65$ years

Example: $\pi_{0}=3.25, \hat{v}=15 \%, \hat{k}=4 \%$ and fix other parameters as in Fig. $13.2 \Rightarrow$ it's optimal to borrow for up to $\tau=30.19$ years

Figure 13.5. Wealth vs. Consumption (Case D)

cont'd

Case 2: $\tau>\bar{R}$

- this can only occur when $\pi_{0}>\exp (g \bar{R})$, i.e., the pension income is greater than the final wage just before retirement (unlikely case)

cont'd

Case 2: $\tau>\bar{R}$

- this can only occur when $\pi_{0}>\exp (g \bar{R})$, i.e., the pension income is greater than the final wage just before retirement (unlikely case)
- first, we have $c_{t}^{*}=\exp (g t)$ (simply consumes wage income) for $0<t<\tau$

cont'd

Case 2: $\tau>\bar{R}$

- this can only occur when $\pi_{0}>\exp (g \bar{R})$, i.e., the pension income is greater than the final wage just before retirement (unlikely case)
- first, we have $c_{t}^{*}=\exp (g t)$ (simply consumes wage income) for $0<t<\tau$
- next, we have $c_{t}^{*}=\hat{c}^{*} \exp (k t)$ and:

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{126}
\end{equation*}
$$

for $\tau<t<\bar{D}$

cont'd

Case 2: $\tau>\bar{R}$

- this can only occur when $\pi_{0}>\exp (g \bar{R})$, i.e., the pension income is greater than the final wage just before retirement (unlikely case)
- first, we have $c_{t}^{*}=\exp (g t)$ (simply consumes wage income) for $0<t<\tau$
- next, we have $c_{t}^{*}=\hat{c}^{*} \exp (k t)$ and:

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+\hat{c}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{126}
\end{equation*}
$$

$$
\text { for } \tau<t<\bar{D}
$$

- the value τ is the root of the function:

$$
\begin{equation*}
f(\tau)=\hat{c}^{*} \frac{e^{-(v-k) \tau}-e^{-(v-k) \bar{D}}}{v-k}-\pi_{0} \frac{e^{-v \tau}-e^{-v \bar{D}}}{v} \tag{127}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{c}^{*}=e^{(g-k) \tau} \tag{128}
\end{equation*}
$$

Impatient Individual $(g<k \leq \hat{k})$

- the optimal solution yields $F_{t}>0$ (no debt)

Impatient Individual $(g<k \leq \hat{k})$

- the optimal solution yields $F_{t}>0$ (no debt)
- the solution is $c_{t}^{*}=c_{0}^{*} \exp (k t)$ and:

$$
\begin{equation*}
e^{-v t} F_{t}=-\pi_{0} \frac{e^{-v t}-e^{-v \bar{D}}}{v}+c_{0}^{*} \frac{e^{-(v-k) t}-e^{-(v-k) \bar{D}}}{v-k} \tag{129}
\end{equation*}
$$

for $\bar{R} \leq t \leq \bar{D}$, and

$$
\begin{equation*}
e^{-v t} F_{t}=-\frac{e^{-(v-g) t}-1}{v-g}+c_{0}^{*} \frac{e^{-(v-k) t}-1}{v-k} \tag{130}
\end{equation*}
$$

for $0 \leq t \leq \bar{R}$, with

$$
\begin{equation*}
c_{0}^{*}=\frac{v-k}{e^{-(v-k) \bar{D}}-1}\left(\frac{e^{-(v-g) \bar{R}}-1}{v-g}-\pi_{0} \frac{e^{-v \bar{R}}-e^{-v \bar{D}}}{v}\right) \tag{131}
\end{equation*}
$$

Example: $k=4 \%, v=15 \%$ and fix other parameters as in Fig. $13.5 \Rightarrow F_{t}$ is positive over the entire lifecycle

