For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages \((w_j)\) and consumption \((c_j)\) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.
For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages (w_j) and consumption (c_j) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.

We are interested in three very important quantities:

1. the optimal savings rate $s_j = \frac{w_j}{c_j}$ during your working years;
2. the optimal trajectory of financial capital F_j over your lifecycle, and;
3. the optimal retirement spending rate $c_j / (F_j + c_j)$ once your wage income is zero, i.e. $j > R$ (more on this in later lectures.)

These three values will depend on your personal patience rate, denoted by k, your retirement horizon R (in years) and the overall length of life D (in years.)
For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages (w_j) and consumption (c_j) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.

We are interested in three very important quantities:

1. the optimal savings rate $s_j^* := (w_j - c_j^*) / w_j$ during your working years;
For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages \((w_j)\) and consumption \((c_j)\) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.

We are interested in three very important quantities:

1. the optimal savings rate \(s_j^* := (w_j - c_j^*) / w_j\) during your working years;
2. the optimal trajectory of financial capital \(F_j^*\) over your lifecycle, and;
For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages \((w_j) \) and consumption \((c_j) \) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.

We are interested in three very important quantities:

1. the optimal savings rate \(s_j^* := (w_j - c_j^*) / w_j \) during your working years;
2. the optimal trajectory of financial capital \(F_j^* \) over your lifecycle, and;
3. the optimal retirement spending rate \(c_j^* / (F_j^* + c_j^*) \) once your wage income is zero, i.e. \(j > R \) (more on this in later lectures.)
For most of the material, questions and answers in this lecture, I will assume that cash-flows for wages \(w_j \) and consumption \(c_j \) occur once at the end of the year. So, all interest rates and valuation rates are quoted as an effective annual rate.

We are interested in three very important quantities:

1. the optimal savings rate \(s_j^* := (w_j - c_j^*) / w_j \) during your working years;
2. the optimal trajectory of financial capital \(F_j^* \) over your lifecycle, and;
3. the optimal retirement spending rate \(c_j^* / (F_j^* + c_j^*) \) once your wage income is zero, i.e. \(j > R \) (more on this in later lectures.)

These three values will depend on your personal patience rate, denoted by \(k \), your retirement horizon \(R \) (in years) and the overall length of life \(D \) (in years.)
Remember the Timelines

- The value of human capital at time zero is the present value of wages until retirement:

\[H_0 = \sum_{j=1}^{R} \frac{w_j}{(1 + v)^j} = w_0 \sum_{j=1}^{R} \frac{(1 + g_w)^j}{(1 + v)^j} = w_0 \cdot PVA(g_w, v, R). \]

Remember that the first payment is at end of year \(j = 1 \). The last payment is at end of year \(j = R \).
Remember the Timelines

- The value of human capital at time zero is the present value of wages until retirement:

\[H_0 = \sum_{j=1}^{R} \frac{w_j}{(1 + v)^j} = w_0 \sum_{j=1}^{R} \frac{(1 + g_w)^j}{(1 + v)^j} = w_0 \cdot \text{PVA}(g_w, v, R). \]

Remember that the first payment is at end of year \(j = 1 \). The last payment is at end of year \(j = R \).

- Pay careful attention to the evolution of financial capital:

\[
\begin{align*}
F_1 &= F_0 (1 + v) + w_1 - c_1 \\
F_2 &= F_1 (1 + v) + w_2 - c_2 \\
F_R &= F_{R-1} (1 + v) + w_R - c_R \\
F_{R+1} &= F_R (1 + v) - c_{R+1}.
\end{align*}
\]
Interest (valuation) rates are $v = 3\%$ in real (inflation adjusted) terms. Make sure you understand what this means.
Question #1a:

- Interest (valuation) rates are $v = 3\%$ in real (inflation adjusted) terms. Make sure you understand what this means.

- You are just about to turn 25 (tomorrow) and have just received your annual paycheck of $w_0 = 50,000$ which is expected to grow at a real rate of $g_w = 1\%$ per year.
Question #1a:

- Interest (valuation) rates are $v = 3\%$ in real (inflation adjusted) terms. Make sure you understand what this means.

- You are just about to turn 25 (tomorrow) and have just received your annual paycheck of $w_0 = $50,000 which is expected to grow at a real rate of $g_w = 1\%$ per year.

- You spent your entire paycheck on a wild birthday party, and woke up (hung over) the next morning (broke) realizing that you are about to turn 25 and should start planning your financial future.
Question #1a:

- Interest (valuation) rates are $v = 3\%$ in real (inflation adjusted) terms. Make sure you understand what this means.

- You are just about to turn 25 (tomorrow) and have just received your annual paycheck of $w_0 = $50,000 which is expected to grow at a real rate of $g_w = 1\%$ per year.

- You spent your entire paycheck on a wild birthday party, and woke up (hung over) the next morning (broke) realizing that you are about to turn 25 and should start planning your financial future.

- After careful thought you have determined that you would like to enjoy a constant real standard of living for the rest of your life, which you estimate to be: $(90 - 25) = 65$ years.
Question #1a:

- Interest (valuation) rates are \(v = 3\% \) in real (inflation adjusted) terms. Make sure you understand what this means.
- You are just about to turn 25 (tomorrow) and have just received your annual paycheck of \(w_0 = \$50,000 \) which is expected to grow at a real rate of \(g_w = 1\% \) per year.
- You spent your entire paycheck on a wild birthday party, and woke up (hung over) the next morning (broke) realizing that you are about to turn 25 and should start planning your financial future.
- After careful thought you have determined that you would like to enjoy a constant real standard of living for the rest of your life, which you estimate to be: \((90 - 25) = 65 \) years.
- **Question:** What is your optimal consumption amount \(c_1^* \) and optimal savings amount \(s_1^* \) at the end of the first year of savings?
Answer: The value of your human capital (today) is:

$$H_0 = 50,000 \cdot PVA(0.01, 0.03, 40) = 50,000(27.45072) = \$1,372,536$$
Answer: The value of your human capital (today) is:

\[H_0 = 50,000 \cdot PVA(0.01, 0.03, 40) = 50,000(27.45072) = $1,372,536 \]

You have no financial capital, so your economic net worth (ENW) is \(W_0 = $1,372,536 \) as well.
Question #1a: (solved)

- **Answer:** The value of your human capital (today) is:

\[H_0 = 50,000 \cdot PVA(0.01, 0.03, 40) = 50,000(27.45072) = 1,372,536 \]

- You have no financial capital, so your economic net worth (ENW) is \(W_0 = 1,372,536 \) as well.

- You would like to spend \(W_0 \) evenly over the next 65 years of life, so the optimal baseline consumption rate is:

\[c_0^* = \frac{1,372,536}{PVA(0.0, 0.03, 65)} = \frac{1,372,536}{28.45289} = 48,239. \]
Question #1a: (solved)

- **Answer**: The value of your human capital (today) is:
 \[H_0 = 50,000 \cdot PVA(0.01, 0.03, 40) = 50,000(27.45072) = $1,372,536 \]

- You have no financial capital, so your economic net worth (ENW) is \(W_0 = $1,372,536 \) as well.

- You would like to spend \(W_0 \) evenly over the next 65 years of life, so the optimal baseline consumption rate is:
 \[
 c_0^* = \frac{1,372,536}{PVA(0.0, 0.03, 65)} = \frac{1,372,536}{28.45289} = $48,239.
 \]

- This leads to an optimal savings rate at (year end) of:
 \[
 s_1^* = \frac{50,000(1 + 0.01) - 48,239(1 + 0.0)}{50,000(1 + 0.01)} = \frac{2,261}{50,500} = 4.48\%
 \]
Question #1a: (solved)

- **Answer:** The value of your human capital (today) is:
 \[H_0 = 50,000 \cdot PVA(0.01, 0.03, 40) = 50,000 \times (27.45072) = $1,372,536 \]

- You have no financial capital, so your economic net worth (ENW) is \(W_0 = $1,372,536 \) as well.

- You would like to spend \(W_0 \) evenly over the next 65 years of life, so the optimal baseline consumption rate is:
 \[c^*_0 = \frac{1,372,536}{PVA(0.0, 0.03, 65)} = \frac{1,372,536}{28.45289} = $48,239. \]

- This leads to an optimal savings rate at (year end) of:
 \[s^*_1 = \frac{50,000(1 + 0.01) - 48,239(1 + 0.0)}{50,000(1 + 0.01)} = \frac{2,261}{50,500} = 4.48\% \]

- So, at the end of your 25th year of life, just before your 26th birthday, make sure to save $2,261 and enjoy the rest.
Question #1b:

Question: How much financial capital (F_{10}^*) will you accumulate over 10 years, just as you are about to turn 35?
Question #1b:

- **Question:** How much financial capital \(F_{10}^* \) will you accumulate over 10 years, just as you are about to turn 35?
- **HINT:** Remember the fundamental identity:

\[
F_j^* + H_j = c_j^* \cdot \text{PVA}(k, v, D - j)
\]
Question #1b:

- **Question**: How much financial capital (F_{10}^*) will you accumulate over 10 years, just as you are about to turn 35?

- **HINT**: Remember the fundamental identity:

 $$F_j^* + H_j = c_j^* \cdot \text{PVA}(k, \nu, D - j)$$

- **Answer**: Compute the present value of human capital at time j,

 \[
 H_j = w_0(1 + g_w)^j \cdot \text{PVA}(g_w, \nu, R - j)
 \]

 \[
 H_{10} = 50,000(1.01)^{10} \cdot \text{PVA}(0.01, 0.03, 30)
 = (55231.11)(22.457557) = $1,240,356
 \]
Question #1b:

Question: How much financial capital (F_{10}^*) will you accumulate over 10 years, just as you are about to turn 35?

HINT: Remember the fundamental identity:

$$F_j^* + H_j = c_j^* \cdot PVA(k, v, D - j)$$

Answer: Compute the present value of human capital at time j,

$$H_j = w_0 (1 + g_w)^j \cdot PVA(g_w, v, R - j)$$

$$H_{10} = 50,000(1.01)^{10} \cdot PVA(0.01, 0.03, 30)$$

$$= (55231.11)(22.457557) = $1,240,356$$

The present value of optimal (remaining) lifetime consumption is:

$$c_0^*(1 + k)^j \cdot PVA(k, v, D - j) = (48,238.9)(26.77443) = $1,291,569$$
Question #1b:

- **Question**: How much financial capital (F_{10}^*) will you accumulate over 10 years, just as you are about to turn 35?

- **HINT**: Remember the fundamental identity:
 \[F_j^* + H_j = c_j^* \cdot \text{PVA}(k, \nu, D - j) \]

- **Answer**: Compute the present value of human capital at time j,
 \[H_j = w_0(1 + g_w)^j \cdot \text{PVA}(g_w, \nu, R - j) \]
 \[H_{10} = 50,000(1.01)^{10} \cdot \text{PVA}(0.01, 0.03, 30) \]
 \[= (55231.11)(22.457557) = $1,240,356 \]

The present value of optimal (remaining) lifetime consumption is:
 \[c_0^*(1 + k)^j \cdot \text{PVA}(k, \nu, D - j) = (48,238.9)(26.77443) = $1,291,569 \]

The optimal value of financial capital at time $j = 10$ is:
 \[F_{10}^* = 1,291,569 - 1,240,356 = $51,213 \]
Case #1: Wages, Consumption, Financial Capital and Human Capital: Wage growth of $g=1\%$, personal patience of $k=0\%$ and valuation $v=3\%$.
Case #1: Wages, Consumption, Financial Capital and Human Capital: Wage growth of g=1%, personal patience of k=0% and valuation v=3%
Question: How much financial capital \(F_{40}^* \) will you accumulate over \(j = 40 \) years, just as you are about to turn 65?

HINT: Remember the fundamental identity:

\[
F_{j+1} + H_j = c_j PVA(k, v, D_j)
\]

Answer: Compute the present value of human capital.

\[
H_{40} = \$0
\]

The present value of optimal (remaining) lifetime consumption is:

\[
c_0(1+k)^j PVA(k, v, D_j) = (48,238.9)(17.41315) = \$839,991
\]

The optimal value of financial capital at time \(j = 40 \) is (by definition):

\[
F_{40}^* = \$839,991
\]

This is often called your retirement nest egg.
Question #1c

- **Question**: How much financial capital \(F_{40}^* \) will you accumulate over \(j = 40 \) years, just as you are about to turn 65?

- **HINT**: Remember the fundamental identity:

\[
F_j^* + H_j = c_j^* \cdot \text{PVA}(k, \nu, D - j)
\]

Answer:

Compute the present value of human capital. \(H_{40} = 0 \)

The present value of optimal (remaining) lifetime consumption is:

\[
c_0 \left(1 + k\right)^j \cdot \text{PVA}(k, \nu, D - j) = (48,238.9)(17.41315) = 839,991
\]

This is often called your retirement nest egg.
Question #1c

- **Question**: How much financial capital \(F_{40}^* \) will you accumulate over \(j = 40 \) years, just as you are about to turn 65?

- **HINT**: Remember the fundamental identity:

\[
F_j^* + H_j = c_j^* \cdot PVA(k, v, D - j)
\]

- **Answer**: Compute the present value of human capital.

\[
H_{40} = $0
\]
Question #1c

- **Question:** How much financial capital \(F_{40}^* \) will you accumulate over \(j = 40 \) years, just as you are about to turn 65?
- **HINT:** Remember the fundamental identity:
 \[
 F_j^* + H_j = c_j^* \cdot PVA(k, \nu, D - j)
 \]
- **Answer:** Compute the present value of human capital.
 \[
 H_{40} = 0
 \]
- The present value of optimal (remaining) lifetime consumption is:
 \[
 c_0^* (1 + k)^j \cdot PVA(k, \nu, D - j) = (48,238.9)(17.41315) = \$839,991
 \]
Question #1c

- **Question**: How much financial capital (F_{40}^*) will you accumulate over $j = 40$ years, just as you are about to turn 65?
- **HINT**: Remember the fundamental identity:

 $$ F_j^* + H_j = c_j^* \cdot PVA(k, \nu, D - j) $$

- **Answer**: Compute the present value of human capital.

 $$ H_{40} = $0 $$

 The present value of optimal (remaining) lifetime consumption is:

 $$ c_0^*(1 + k)^j \cdot PVA(k, \nu, D - j) = (48,238.9)(17.41315) = $839,991 $$

 The optimal value of financial capital at time $j = 40$ is (by definition):

 $$ F_{40}^* = $839,991 $$
Question #1c

- **Question:** How much financial capital (F^*_{40}) will you accumulate over $j = 40$ years, just as you are about to turn 65?
- **HINT:** Remember the fundamental identity:

 $$F_j^* + H_j = c_j^* \cdot \text{PVA}(k, v, D - j)$$

- **Answer:** Compute the present value of human capital.

 $$H_{40} = \$0$$

 The present value of optimal (remaining) lifetime consumption is:

 $$c_0^* (1 + k)^j \cdot \text{PVA}(k, v, D - j) = (48,238.9)(17,41315) = \$839,991$$

 The optimal value of financial capital at time $j = 40$ is (by definition):

 $$F^*_{40} = \$839,991$$

 This is often called your retirement nest egg.
Summary Values Question #1

Summary values for wages, optimal consumption, optimal savings amount, optimal savings rate and financial capital, assuming $v = 3\%$ and $k = 0\%$.

<table>
<thead>
<tr>
<th>Year #</th>
<th>Wage</th>
<th>Consume</th>
<th>Saving</th>
<th>Rate</th>
<th>Fin. Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>w_j</td>
<td>c_j^*</td>
<td>s_j^*</td>
<td>s_j^*/w_j</td>
<td>F_j^*</td>
</tr>
<tr>
<td>0</td>
<td>$50,000$</td>
<td>$48,239$</td>
<td>$1,761$</td>
<td>3.52%</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$50,500$</td>
<td>$48,239$</td>
<td>$2,261$</td>
<td>4.48%</td>
<td>$2,261$</td>
</tr>
<tr>
<td>10</td>
<td>$55,231$</td>
<td>$48,239$</td>
<td>$6,992$</td>
<td>12.66%</td>
<td>$51,213$</td>
</tr>
<tr>
<td>25</td>
<td>$64,122$</td>
<td>$48,239$</td>
<td>$15,883$</td>
<td>24.77%</td>
<td>$289,894$</td>
</tr>
<tr>
<td>40</td>
<td>$74,443$</td>
<td>$48,239$</td>
<td>$26,204$</td>
<td>35.20%</td>
<td>$839,991$</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>$48,239$</td>
<td>0</td>
<td>N.A.</td>
<td>$816,952$</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>$48,239$</td>
<td>0</td>
<td>N.A.</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Time zero are baseline consumption amounts.
Question #2:

Question: Assume that instead of $k = 0$, that $k = 1\%$ and you would like your standard of living to increase (smoothly) by 1% per year. What is the optimal baseline consumption rate?
Question #2:

Question: Assume that instead of $k = 0$, that $k = 1\%$ and you would like your standard of living to increase (smoothly) by 1% per year. What is the optimal baseline consumption rate?

Answer: The value of your human capital (today) and ENW is still $1,372,536$
Question #2:

- Question: Assume that instead of $k = 0$, that $k = 1\%$ and you would like your standard of living to increase (smoothly) by 1% per year. What is the optimal baseline consumption rate?
- **Answer:** The value of your human capital (today) and ENW is still $1,372,536$
- You would like to spend H_0 evenly over the next 65 years of life, so the optimal baseline consumption rate:

\[
c_0^* = \frac{1,372,536}{PVA(0.01, 0.03, 65)} = $37,725
\]

which is obviously lower than the previous $48,239$. Why?
Question #2:

- **Question:** Assume that instead of $k = 0$, that $k = 1\%$ and you would like your standard of living to increase (smoothly) by 1% per year. What is the optimal baseline consumption rate?

- **Answer:** The value of your human capital (today) and ENW is still $1,372,536$

You would like to spend H_0 evenly over the next 65 years of life, so the optimal baseline consumption rate:

$$c_0^* = \frac{1,372,536}{\text{PVA}(0.01, 0.03, 65)} = $37,725$$

which is obviously lower than the previous $48,239$. Why?

This leads to an optimal savings rate at (year end) of:

$$s_1^* = \frac{50,000(1.01) - 37,725(1.01)}{50,000(1.01)} = \frac{50000 - 37725}{50000} = 24.55\%$$
Question #2:

- Question: Assume that instead of \(k = 0 \), that \(k = 1\% \) and you would like your standard of living to increase (smoothly) by 1\% per year. What is the optimal baseline consumption rate?

- **Answer**: The value of your human capital (today) and ENW is still $1,372,536.

- You would like to spend \(H_0 \) evenly over the next 65 years of life, so the optimal baseline consumption rate:

 \[
 c_0^* = \frac{1,372,536}{PVA(0.01, 0.03, 65)} = $37,725
 \]

 which is obviously lower than the previous $48,239. Why?

- This leads to an optimal savings rate at (year end) of:

 \[
 s_1^* = \frac{50,000(1.01) - 37,725(1.01)}{50,000(1.01)} = \frac{50000 - 37725}{50000} = 24.55\%
 \]

- Notice that the savings rate does not depend on time (or age.)
Case #2: Wages, Consumption, Financial Capital and Human Capital: Wage growth of $g=1\%$, personal patience of $k=1\%$ and valuation $v=3\%$
Case #2: Wages, Consumption, Financial Capital and Human Capital: Wage growth of $g=1\%$, personal patience of $k=1\%$ and valuation $v=3\%$
Summary values for wages, optimal consumption, optimal savings amount, optimal savings rate and financial capital, assuming $v = 3\%$ and $k = 1\%$.

<table>
<thead>
<tr>
<th>Year #</th>
<th>Wage</th>
<th>Consume</th>
<th>Saving</th>
<th>Rate</th>
<th>Fin. Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>w_j</td>
<td>c_j^*</td>
<td>s_j^*</td>
<td>s_j^*/w_j</td>
<td>F_j^*</td>
</tr>
<tr>
<td>0</td>
<td>$50,000$</td>
<td>$37,725$</td>
<td>$12,275$</td>
<td>24.55%</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$50,500$</td>
<td>$38,103$</td>
<td>$12,397$</td>
<td>24.55%</td>
<td>$12,397$</td>
</tr>
<tr>
<td>10</td>
<td>$55,231$</td>
<td>$41,672$</td>
<td>$13,559$</td>
<td>24.55%</td>
<td>$148,332$</td>
</tr>
<tr>
<td>25</td>
<td>$64,122$</td>
<td>$48,380$</td>
<td>$15,741$</td>
<td>24.55%</td>
<td>$502,932$</td>
</tr>
<tr>
<td>40</td>
<td>$74,443$</td>
<td>$56,168$</td>
<td>$18,275$</td>
<td>24.55%</td>
<td>$1,099,143$</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>$56,729$</td>
<td>0</td>
<td>N.A.</td>
<td>$1,075,388$</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>$72,031$</td>
<td>0</td>
<td>N.A.</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Time zero are baseline consumption amounts.
Question #3:

Question: Now assume that $k = -1\%$ and you would like your standard of living to start very high and then decline (smoothly) by 1% per year. What is the optimal initial consumption rate?

Answer: Value of your human capital is still $1,372,536. You would like to spend H_0 evenly over the next 65 years of life, so the baseline consumption rate is:

$$c_0 = 1,372,536 \text{PVA}(0.01, 0.03, 65) = 60,029,029,$$

which is obviously much higher than your baseline wage of $w_0 = 50,000$. This leads to a negative savings rate at (year end) of:

$$s_1 = 50,000 (1.01) 60,029 (0.99) 50,500 = 8,929,500,$$

17.68%. You will spend almost 18% more than what you make, by taking on debt.
Question #3:

- **Question:** Now assume that $k = -1\%$ and you would like your standard of living to start very high and then decline (smoothly) by 1% per year. What is the optimal initial consumption rate?
- **Answer:** Value of your human capital is still $1,372,536$

You would like to spend H_0 evenly over the next 65 years of life, so the baseline consumption rate is:

$$c_0 = \frac{1,372,536}{60,029} \approx 22.84$$

which is obviously much higher than your baseline wage of $w_0 = 50,000$

This leads to a negative savings rate at (year end) of:

$$s_1 = 50,000 \cdot (1.01) \cdot 60,029 \cdot (0.99) \cdot 50,000 \cdot (1.01) \approx -8,929$$

You will spend almost 18% more than what you make, by taking on debt.
Question #3:

- **Question:** Now assume that \(k = -1\% \) and you would like your standard of living to start very high and then decline (smoothly) by 1% per year. What is the optimal initial consumption rate?
- **Answer:** Value of your human capital is still $1,372,536
- You would like to spend \(H_0 \) evenly over the next 65 years of life, so the baseline consumption rate is:

\[
c_0^* = \frac{1,372,536}{PVA(-0.01, 0.03, 65)} = $60,029,
\]

which is obviously much higher than your baseline wage of \(w_0 = $50,000 \).
Question #3:

- Question: Now assume that \(k = -1\% \) and you would like your standard of living to start very high and then decline (smoothly) by 1\% per year. What is the optimal initial consumption rate?

- Answer: Value of your human capital is still $1,372,536

You would like to spend \(H_0 \) evenly over the next 65 years of life, so the baseline consumption rate is:

\[
c_0^* = \frac{1,372,536}{PVA(-0.01, 0.03, 65)} = $60,029,
\]

which is obviously much higher than your baseline wage of \(w_0 = $50,000 \).

- This leads to a negative savings rate at (year end) of:

\[
s_1^* = \frac{50,000(1.01) - 60,029(0.99)}{50,000(1.01)} = \frac{-8,929}{50,500} = -17.68\%\]
Question #3:

- **Question**: Now assume that $k = -1\%$ and you would like your standard of living to start very high and then decline (smoothly) by 1% per year. What is the optimal initial consumption rate?

- **Answer**: Value of your human capital is still $1,372,536

- You would like to spend H_0 evenly over the next 65 years of life, so the baseline consumption rate is:

$$c_0^* = \frac{1,372,536}{PVA(-0.01, 0.03, 65)} = \$60,029,$$

which is obviously much higher than your baseline wage of $w_0 = \$50,000$.

- This leads to a negative savings rate at (year end) of:

$$s_1^* = \frac{50,000(1.01) - 60,029(0.99)}{50,000(1.01)} = \frac{-8,929}{50,500} = -17.68\%$$

- You will spend almost 18% more than what you make, by taking on debt.
When Will You Start Saving?

Question: When will the optimal savings rate be positive?

Answer: You must solve the following equation:

\[s_j = w_0 \left(1 + g w_j c_0 \right) - k_0 \left(1 + g w_j \right) = 0. \]

This leads to:

\[1 + k_1 + g w_j = w_0 c_0. \]

In our case it results in:

\[j \ln 0.99101 = \ln 50000 \times 0.0029. \]

So that:

\[j = \frac{\ln 50000 \times 0.0029}{\ln 0.99101} = 9.139, \]

and in the 10th year (at age 35) the savings rate is positive for the first time.
When Will You Start Saving?

- **Question**: When will the optimal savings rate be positive?
- **Answer**: You must solve the following equation:

\[
\begin{align*}
 s^*_j &= \frac{w_0 (1 + g_w)^j - c_0^*(1 + k)^j}{w_0 (1 + g_w)^j} = 0.
\end{align*}
\]

This leads to:

\[
\begin{align*}
 1 + k &= \frac{w_0 (1 + g_w)^j}{c_0^*(1 + k)^j}.
\end{align*}
\]

In our case it results in:

\[
\begin{align*}
 j \ln 0.99101 &= \ln 5000060029.
\end{align*}
\]

So that:

\[
\begin{align*}
 j &= \frac{\ln 5000060029}{\ln 0.99101} = 9.139,
\end{align*}
\]

and in the 10th year (at age 35) the savings rate is positive for the first time.
Question: When will the optimal savings rate be positive?

Answer: You must solve the following equation:

\[s_j^* = \frac{w_0(1 + g_w)^j - c_0^*(1 + k)^j}{w_0(1 + g_w)^j} = 0. \]

This leads to:

\[\left(\frac{1 + k}{1 + g_w} \right)^j = \frac{w_0}{c_0^*}. \]
Question: When will the optimal savings rate be positive?

Answer: You must solve the following equation:

\[s_j^* = \frac{w_0 (1 + g_w)^j - c_0^* (1 + k)^j}{w_0 (1 + g_w)^j} = 0. \]

This leads to:

\[\left(\frac{1 + k}{1 + g_w} \right)^j = \frac{w_0}{c_0^*}. \]

In our case it results in:

\[j \ln \left[\frac{0.99}{1.01} \right] = \ln \left[\frac{50000}{60029} \right] \]

so that:

\[j = \frac{\ln \left[\frac{50000}{60029} \right]}{\ln \left[\frac{0.99}{1.01} \right]} \approx 9.139, \]

and in the 10th year (at age 35) the savings rate is positive for the first time.
When Will You Start Saving?

Question: When will the optimal savings rate be positive?

Answer: You must solve the following equation:

\[s_j^* = \frac{w_0(1 + g_w)^j - c_0^*(1 + k)^j}{w_0(1 + g_w)^j} = 0. \]

This leads to:

\[\left(\frac{1 + k}{1 + g_w} \right)^j = \frac{w_0}{c_0^*}. \]

In our case it results in:

\[j \ln \left[\frac{0.99}{1.01} \right] = \ln \left[\frac{50000}{60029} \right] \]

So that:

\[j = \ln \left[\frac{50000}{60029} \right] / \ln \left[\frac{0.99}{1.01} \right] = 9.139, \]

and in the 10th year (at age 35) the savings rate is positive for the first time.
Case #3: Wages, Consumption, Financial Capital and Human Capital: Wage growth of $g=1\%$, personal patience of $k=-1\%$ and valuation $v=3\%$
Case #3: Wages, Consumption, Financial Capital and Human Capital:
Wage growth of $g=1\%$, personal patience of $k=-1\%$ and valuation $v=3\%$
Summary Values Question #3

Summary values for wages, optimal consumption, optimal savings amount, optimal savings rate and financial capital, assuming $\nu = 3\%$ and $k = -1\%$.

<table>
<thead>
<tr>
<th>Year #</th>
<th>Wage</th>
<th>Consume</th>
<th>Saving</th>
<th>Rate</th>
<th>Fin. Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>w_j</td>
<td>c_j^*</td>
<td>s_j^*</td>
<td>s_j^*/w_j</td>
<td>F_j^*</td>
</tr>
<tr>
<td>0</td>
<td>$50,000$</td>
<td>$60,029$</td>
<td>$-10,029$</td>
<td>$-20.06%$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$50,500$</td>
<td>$59,429$</td>
<td>$-8,929$</td>
<td>$-17.68%$</td>
<td>$-8,929$</td>
</tr>
<tr>
<td>10</td>
<td>$55,231$</td>
<td>$54,289$</td>
<td>942</td>
<td>$1.7%$</td>
<td>$-48,809$</td>
</tr>
<tr>
<td>25</td>
<td>$64,122$</td>
<td>$46,692$</td>
<td>$17,430$</td>
<td>$27.18%$</td>
<td>$93,498$</td>
</tr>
<tr>
<td>40</td>
<td>$74,443$</td>
<td>$40,158$</td>
<td>$34,285$</td>
<td>$46.06%$</td>
<td>$624,680$</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>$39,756$</td>
<td>0</td>
<td>N.A.</td>
<td>$603,664$</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>$31,236$</td>
<td>0</td>
<td>N.A.</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Time zero are hypothetical (baseline) amounts.
Here are some qualitative facts about consumption and savings rate, given the same H_0 and v (as well as R and D).

- Tell me your k and I’ll show you your c_0^*.

Take-aways

Here are some qualitative facts about consumption and savings rate, given the same H_0 and ν (as well as R and D.)

- Tell me your k and I’ll show you your c_0^*.
- Show me your c_0^* and I can figure-out your k.

Impatient consumers borrow money and live in debt early in life. They will accumulate less wealth at retirement. The must save a higher percentage of their final-years salary. They obviously are taking on some risk...

CHM (Cambridge 2012)
Strategic FP over L
Ch. #4: Lecture Notes
Take-aways

Here are some qualitative facts about consumption and savings rate, given the same H_0 and ν (as well as R and D.)

- Tell me your k and I’ll show you your c_0^*.
- Show me your c_0^* and I can figure-out your k.
- Impatient consumers borrow money and live in debt early in life.

CHM (Cambridge 2012)
Here are some qualitative facts about consumption and savings rate, given the same H_0 and ν (as well as R and D.)

- Tell me your k and I’ll show you your c_0^*.
- Show me your c_0^* and I can figure-out your k.
- Impatient consumers borrow money and live in debt early in life.
- They will accumulate less wealth at retirement.
Here are some qualitative facts about consumption and savings rate, given the same H_0 and ν (as well as R and D.)

- Tell me your k and I’ll show you your c_0^*.
- Show me your c_0^* and I can figure-out your k.
- Impatient consumers borrow money and live in debt early in life.
- They will accumulate less wealth at retirement.
- The must save a higher percentage of their final-years salary.
Here are some qualitative facts about consumption and savings rate, given the same H_0 and v (as well as R and D.)

- Tell me your k and I’ll show you your c_0^*.
- Show me your c_0^* and I can figure-out your k.
- Impatient consumers borrow money and live in debt early in life.
- They will accumulate less wealth at retirement.
- The must save a higher percentage of their final-years salary.
- They obviously are taking on some risk...