Strategic Financial Planning over the Lifecycle

 Chapter \#8: Mortality Risk and InsuranceNarat Charupat, Huaxiong Huang and Moshe A. Milevsky

Ch. \#8: Lecture Notes

Learning Objectives

- Who needs life insurance (LI), why, and how much do they need?

Learning Objectives

- Who needs life insurance (LI), why, and how much do they need?
- What does it cost and how is LI valued and priced?

Learning Objectives

- Who needs life insurance (LI), why, and how much do they need?
- What does it cost and how is LI valued and priced?
- What are the tax implications of buying and selling a LI policy?

Learning Objectives

- Who needs life insurance (LI), why, and how much do they need?
- What does it cost and how is LI valued and priced?
- What are the tax implications of buying and selling a LI policy?
- What are the three (3) major types of life insurance?

Learning Objectives

- Who needs life insurance (LI), why, and how much do they need?
- What does it cost and how is LI valued and priced?
- What are the tax implications of buying and selling a LI policy?
- What are the three (3) major types of life insurance?
- Finally: Is selling life insurance a good way to make a living?

Question: Does Joe Need Life Insurance?

- Joe Canadian is 78 years-old, retired for over ten years, with a loving wife, 2 daughters and 5 grandchildren.

Question: Does Joe Need Life Insurance?

- Joe Canadian is 78 years-old, retired for over ten years, with a loving wife, 2 daughters and 5 grandchildren.
- Unfortunately, he has a chronic heart condition that runs in the family. His father died of a heart-attack many years ago, at the age of 67 .

Question: Does Joe Need Life Insurance?

- Joe Canadian is 78 years-old, retired for over ten years, with a loving wife, 2 daughters and 5 grandchildren.
- Unfortunately, he has a chronic heart condition that runs in the family. His father died of a heart-attack many years ago, at the age of 67 .
- Joe smokes an occasional Cuban cigar, which he knows isn't good.

Question: Does Joe Need Life Insurance?

- Joe Canadian is 78 years-old, retired for over ten years, with a loving wife, 2 daughters and 5 grandchildren.
- Unfortunately, he has a chronic heart condition that runs in the family. His father died of a heart-attack many years ago, at the age of 67 .
- Joe smokes an occasional Cuban cigar, which he knows isn't good.
- His doctor has warned Joe that if he isn't careful, he might get a heart-attack that will be fatal.

Question: Does Joe Need Life Insurance?

- Joe Canadian is 78 years-old, retired for over ten years, with a loving wife, 2 daughters and 5 grandchildren.
- Unfortunately, he has a chronic heart condition that runs in the family. His father died of a heart-attack many years ago, at the age of 67 .
- Joe smokes an occasional Cuban cigar, which he knows isn't good.
- His doctor has warned Joe that if he isn't careful, he might get a heart-attack that will be fatal.
- QUESTION: Given his age and the dire medical warnings, should Joe consider buying some life insurance?

More Information About Joe

- Joe is very comfortable financially, and already has a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ life insurance policy for which he is currently paying $\mathbf{\$ 1 5 , 0 0 0}$ per year in insurance premiums. The policy has no cash-value.

More Information About Joe

- Joe is very comfortable financially, and already has a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ life insurance policy for which he is currently paying $\mathbf{\$ 1 5 , 0 0 0}$ per year in insurance premiums. The policy has no cash-value.
- Joe sold his plumbing manufacturing business to Canadian Tire before he retired and now has a net worth of approximately $\mathbf{\$ 2 5}$ million dollars, which is invested in a diversified portfolio of stocks, bonds and real-estate.

More Information About Joe

- Joe is very comfortable financially, and already has a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ life insurance policy for which he is currently paying $\mathbf{\$ 1 5 , 0 0 0}$ per year in insurance premiums. The policy has no cash-value.
- Joe sold his plumbing manufacturing business to Canadian Tire before he retired and now has a net worth of approximately $\mathbf{\$ 2 5}$ million dollars, which is invested in a diversified portfolio of stocks, bonds and real-estate.
- His two children, Thelma (42) and Louise (38) are both financially self-sufficient, University graduates, now working as corporate attorneys at the prestigious law firm of Shark, Stingray \& Piranha.

More Information About Joe

- Joe is very comfortable financially, and already has a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ life insurance policy for which he is currently paying $\mathbf{\$ 1 5 , 0 0 0}$ per year in insurance premiums. The policy has no cash-value.
- Joe sold his plumbing manufacturing business to Canadian Tire before he retired and now has a net worth of approximately $\$ 25$ million dollars, which is invested in a diversified portfolio of stocks, bonds and real-estate.
- His two children, Thelma (42) and Louise (38) are both financially self-sufficient, University graduates, now working as corporate attorneys at the prestigious law firm of Shark, Stingray \& Piranha.
- Question: Does Joe really need (more) life insurance?

Question: Does Joanne Need Life Insurance?

- Joanne is 32 years old, with three lovely children ages 2, 5 and 8 . She is working as a professor of Viking literature at a large Canadian university. Her common-law partner Frank is 28 and stays home to raise the kids. In his spare time he is working on (writing) a great novel and does some freelance magazine editing to pay-off student loans.

Question: Does Joanne Need Life Insurance?

- Joanne is 32 years old, with three lovely children ages 2, 5 and 8 . She is working as a professor of Viking literature at a large Canadian university. Her common-law partner Frank is 28 and stays home to raise the kids. In his spare time he is working on (writing) a great novel and does some freelance magazine editing to pay-off student loans.
- Joanne earns $\$ 59,000$ per year as a non-tenured faculty member, and the University offers a life insurance policy to all its employees which pays three (3) times annual salary to the beneficiary (Frank and the 3 kids) in the event of death.

Question: Does Joanne Need Life Insurance?

- Joanne is 32 years old, with three lovely children ages 2, 5 and 8 . She is working as a professor of Viking literature at a large Canadian university. Her common-law partner Frank is 28 and stays home to raise the kids. In his spare time he is working on (writing) a great novel and does some freelance magazine editing to pay-off student loans.
- Joanne earns $\$ 59,000$ per year as a non-tenured faculty member, and the University offers a life insurance policy to all its employees which pays three (3) times annual salary to the beneficiary (Frank and the 3 kids) in the event of death.
- Joanne and Frank are in excellent health, and come from a lineage of long-lived Scandinavians. They exercise regularly, run marathons, do yoga (together) and are probably vegetarian (and vote NDP.)

Question: Does Joanne Need Life Insurance?

- Joanne is 32 years old, with three lovely children ages 2, 5 and 8 . She is working as a professor of Viking literature at a large Canadian university. Her common-law partner Frank is 28 and stays home to raise the kids. In his spare time he is working on (writing) a great novel and does some freelance magazine editing to pay-off student loans.
- Joanne earns \$59,000 per year as a non-tenured faculty member, and the University offers a life insurance policy to all its employees which pays three (3) times annual salary to the beneficiary (Frank and the 3 kids) in the event of death.
- Joanne and Frank are in excellent health, and come from a lineage of long-lived Scandinavians. They exercise regularly, run marathons, do yoga (together) and are probably vegetarian (and vote NDP.)
- Question \#1: Do they need (more) Life Insurance?

Question: Does Joanne Need Life Insurance?

- Joanne is 32 years old, with three lovely children ages 2, 5 and 8 . She is working as a professor of Viking literature at a large Canadian university. Her common-law partner Frank is 28 and stays home to raise the kids. In his spare time he is working on (writing) a great novel and does some freelance magazine editing to pay-off student loans.
- Joanne earns $\$ 59,000$ per year as a non-tenured faculty member, and the University offers a life insurance policy to all its employees which pays three (3) times annual salary to the beneficiary (Frank and the 3 kids) in the event of death.
- Joanne and Frank are in excellent health, and come from a lineage of long-lived Scandinavians. They exercise regularly, run marathons, do yoga (together) and are probably vegetarian (and vote NDP.)
- Question \#1: Do they need (more) Life Insurance?
- Question \#2: Do they need any other type of insurance?

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.
- It is (primarily) meant as a personal risk management instrument, with a forced savings component.

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.
- It is (primarily) meant as a personal risk management instrument, with a forced savings component.
- It is not meant as a financial investment nor does it provide a positive expected return (on a pre-tax basis.) It is a hedge against the loss of human capital.

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.
- It is (primarily) meant as a personal risk management instrument, with a forced savings component.
- It is not meant as a financial investment nor does it provide a positive expected return (on a pre-tax basis.) It is a hedge against the loss of human capital.
- The insurance company makes money selling (basic) life insurance, the agents make money selling (basic) life insurance. This is a zero-sum game, so don't confuse investments with insurance.

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.
- It is (primarily) meant as a personal risk management instrument, with a forced savings component.
- It is not meant as a financial investment nor does it provide a positive expected return (on a pre-tax basis.) It is a hedge against the loss of human capital.
- The insurance company makes money selling (basic) life insurance, the agents make money selling (basic) life insurance. This is a zero-sum game, so don't confuse investments with insurance.
- Forget about age, wage and health. Think liabilities, dependents and vulnerabilities.

So, Who Needs Life Insurance and How Much?

- Life Insurance is not a consolation prize for the survivors.
- It is (primarily) meant as a personal risk management instrument, with a forced savings component.
- It is not meant as a financial investment nor does it provide a positive expected return (on a pre-tax basis.) It is a hedge against the loss of human capital.
- The insurance company makes money selling (basic) life insurance, the agents make money selling (basic) life insurance. This is a zero-sum game, so don't confuse investments with insurance.
- Forget about age, wage and health. Think liabilities, dependents and vulnerabilities.
- Life insurance is sold, not bought.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over $\$ 310$ billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\$ 200$ billion was by individuals.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over $\$ 310$ billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\mathbf{\$ 2 0 0}$ billion was by individuals.
- Canadians purchased $\mathbf{7 6 0 , 0 0 0}$ individual policies with an average face value (death benefit) of $\mathbf{\$ 2 7 0 , 0 0 0}$ during the year 2009.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over $\$ 310$ billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\mathbf{\$ 2 0 0}$ billion was by individuals.
- Canadians purchased $\mathbf{7 6 0 , 0 0 0}$ individual policies with an average face value (death benefit) of \$270,000 during the year 2009.
- By early 2010, almost 21 million Canadians owned a total of $\$ 3,475$ billion (i.e. $\$ 3.4$ trillion) face value of life insurance.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over $\$ 310$ billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\mathbf{\$ 2 0 0}$ billion was by individuals.
- Canadians purchased $\mathbf{7 6 0 , 0 0 0}$ individual policies with an average face value (death benefit) of \$270,000 during the year 2009.
- By early 2010, almost 21 million Canadians owned a total of \$3,475 billion (i.e. $\$ 3.4$ trillion) face value of life insurance.
- In 2009, Canadians paid LI premiums of $\$ 15$ billion to insurance companies; policyholders and beneficiaries received $\$ 7.6$ billion in LI benefits.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over \$310 billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\mathbf{\$ 2 0 0}$ billion was by individuals.
- Canadians purchased $\mathbf{7 6 0 , 0 0 0}$ individual policies with an average face value (death benefit) of \$270,000 during the year 2009.
- By early 2010, almost 21 million Canadians owned a total of $\$ 3,475$ billion (i.e. $\$ 3.4$ trillion) face value of life insurance.
- In 2009, Canadians paid LI premiums of $\$ 15$ billion to insurance companies; policyholders and beneficiaries received $\$ 7.6$ billion in LI benefits.
- In early 2010 there were $\mathbf{9 6}$ active life insurance companies in Canada, holding almost $\$ 500$ billion in assets, and employing 132,000 Canadians.

Important Concepts and Industry Background

- During the year 2009, Canadians purchased over $\$ 310$ billion face value (death benefit) of life insurance, of which over $\$ 100$ billion was part of a group purchase and over $\mathbf{\$ 2 0 0}$ billion was by individuals.
- Canadians purchased $\mathbf{7 6 0 , 0 0 0}$ individual policies with an average face value (death benefit) of \$270,000 during the year 2009.
- By early 2010, almost 21 million Canadians owned a total of $\$ 3,475$ billion (i.e. $\$ 3.4$ trillion) face value of life insurance.
- In 2009, Canadians paid LI premiums of $\$ 15$ billion to insurance companies; policyholders and beneficiaries received $\$ 7.6$ billion in LI benefits.
- In early 2010 there were $\mathbf{9 6}$ active life insurance companies in Canada, holding almost $\$ 500$ billion in assets, and employing 132,000 Canadians.
- These insurance companies also sell pension annuities and health-benefit plans, for total premium income of \$80 billion in 2009.

What Are the Income Tax Implications?

- The death benefit (payout to a beneficiary or survivor) is non-taxable. This makes a huge difference.

What Are the Income Tax Implications?

- The death benefit (payout to a beneficiary or survivor) is non-taxable. This makes a huge difference.
- The insurance premium is not tax-deductible. So, you pay and invest with after-tax dollars.

What Are the Income Tax Implications?

- The death benefit (payout to a beneficiary or survivor) is non-taxable. This makes a huge difference.
- The insurance premium is not tax-deductible. So, you pay and invest with after-tax dollars.
- If you surrender the policy or lapse the policy - i.e. stop paying premiums - and the policy has a cash value, it will be taxable if you receive more than the policy's adjusted cost base (ACB).

What Are the Income Tax Implications?

- The death benefit (payout to a beneficiary or survivor) is non-taxable. This makes a huge difference.
- The insurance premium is not tax-deductible. So, you pay and invest with after-tax dollars.
- If you surrender the policy or lapse the policy - i.e. stop paying premiums - and the policy has a cash value, it will be taxable if you receive more than the policy's adjusted cost base (ACB).
- Life insurance policies that have a savings/investment component, as opposed to pure insurance, enjoy tax-free accumulation, a.k.a. inside buildup. Think of this as an (expensive) TFSA.

What Are the Income Tax Implications?

- The death benefit (payout to a beneficiary or survivor) is non-taxable. This makes a huge difference.
- The insurance premium is not tax-deductible. So, you pay and invest with after-tax dollars.
- If you surrender the policy or lapse the policy - i.e. stop paying premiums - and the policy has a cash value, it will be taxable if you receive more than the policy's adjusted cost base (ACB).
- Life insurance policies that have a savings/investment component, as opposed to pure insurance, enjoy tax-free accumulation, a.k.a. inside buildup. Think of this as an (expensive) TFSA.
- Life insurance enjoys a very special (beneficial) tax treatment compared to other investment vehicles and the industry lobbies very aggressively to maintain this favorable treatment.

What Does Basic Life Insurance Cost?

- The single most important factor is your age/gender.

Monthly Premiums for $\$ 100 \mathrm{~K}$ of Term LI (Excellent Health)						
Term of	Age 30	Age 50	Age 70			
Insurance	Male	Fem.	Male	Fem.	Male	Fem.
5 years	12.71	11.53	19.65	15.30	105.65	59.27
10 years	8.21	7.68	17.95	14.57	102.51	55.96
20 years	11.01	9.68	27.56	21.19	207.54	128.07
30 years	15.47	12.88	46.23	33.15	307.33	259.50
Term-to-100*	33.51	27.27	103.60	81.51	373.83	299.07

What Does Basic Life Insurance Cost?

- The single most important factor is your age/gender.

Monthly Premiums for $\$ 100 \mathrm{~K}$ of Term LI (Excellent Health)						
Term of	Age 30	Age 50	Age 70			
Insurance	Male	Fem.	Male	Fem.	Male	Fem.
5 years	12.71	11.53	19.65	15.30	105.65	59.27
10 years	8.21	7.68	17.95	14.57	102.51	55.96
20 years	11.01	9.68	27.56	21.19	207.54	128.07
30 years	15.47	12.88	46.23	33.15	307.33	259.50
Term-to-100*	33.51	27.27	103.60	81.51	373.83	299.07

- Review the relationship with each-other carefully. Do they make sense?

Impact of Health Status on LI Cost

Monthly Premiums for \$100,000 of Term Life Insurance						
50 year-old with varying Health Status (Scale of 1 to 5)						
	Average (2/5)		Excellent (4/5)		Exceptional (5/5)	
Term	Male	Fem.	Male	Fem.	Male	Fem.
5 yrs	27.61	20.68	19.65	15.30	15.37	12.11
10 yrs	23.54	18.38	17.95	14.57	14.86	12.48
20 yrs	38.69	28.65	27.56	21.19	23.85	17.90

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.
- The money (premium) is invested by the insurance company in their general account, very conservatively so that it is available to pay insurance claims when needed.

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.
- The money (premium) is invested by the insurance company in their general account, very conservatively so that it is available to pay insurance claims when needed.
- This is a competitive market and so if one company raises or lowers rates, others follow soon-after, but this doesn't happen very often with life insurance prices.

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.
- The money (premium) is invested by the insurance company in their general account, very conservatively so that it is available to pay insurance claims when needed.
- This is a competitive market and so if one company raises or lowers rates, others follow soon-after, but this doesn't happen very often with life insurance prices.
- Actuaries use sophisticated mathematical models to price life (as well as many other forms of) insurance.

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.
- The money (premium) is invested by the insurance company in their general account, very conservatively so that it is available to pay insurance claims when needed.
- This is a competitive market and so if one company raises or lowers rates, others follow soon-after, but this doesn't happen very often with life insurance prices.
- Actuaries use sophisticated mathematical models to price life (as well as many other forms of) insurance.
- In particular, (1.) interest rates and (2.) mortality rates (i.e. your age, gender and health) play a big role in pricing.

Where Do These Prices Come From?

- These numbers are determined by the individual insurance companies, with a bit of "nudging" from regulators.
- The money (premium) is invested by the insurance company in their general account, very conservatively so that it is available to pay insurance claims when needed.
- This is a competitive market and so if one company raises or lowers rates, others follow soon-after, but this doesn't happen very often with life insurance prices.
- Actuaries use sophisticated mathematical models to price life (as well as many other forms of) insurance.
- In particular, (1.) interest rates and (2.) mortality rates (i.e. your age, gender and health) play a big role in pricing.
- Long-term rates are currently at historical lows. What impact do you think this has on insurance prices?

THEInswrance \&Investment JOURNAL

LSM Insurance was featured in February issue of The Insurance Journal. Enjoy the article!

Lew interest rates have diminished the profitability of level cost uni-
versal life inswranee for years. Although fieree competition may have versal life insursnee for years. Although fieree competition may have a choice. Long-tarm interest rates have finally forced changes.

Based an outhuted actaarial awarrypions,
level cost usiverval life inasrance seeded a
serisen ewethei to reters te pembithlity Afer
bothening ost ia 2008 , hay-irnn indereat rater ates agen fell below 1.95 pat before war

Alliance boonted its lowel cout os Jan. 17 sun Life Naancial followed on lan 28 and Canada Life did the same as Ret. 1 Empire Life anscuaced that is would make a siniler

Alliance, sold The lisarawore and hevesteved Journal. Wiat this poseralized iscrease. he thiaks the indostry has solved its imerest rase probles for 2015
Sen Life explaias the increase to its asvisers as iss wapbite -Isterest rates hame conimasd to fall, wah lowe aerm Canalian bead yields falline so their lowest leoels in recent hishary..T This coetiased lew isteresi

Introduction to Actuarial Mortality Rates and Tables

Canadian Population 2000/2002	
Annual Death (Mortality) Rate	
Probability of Death $\times 1000$	
Age	Female
20	0.340
Male	
30	0.390
40	0.820
50	2.290
60	5.870
70	14.930
80	42.400
90	130.880
Statistics Canada (84-537-XIE)	

Actuarial Mortality Rates: Part II

- A mortality table maps an age (x) into a probability of death q_{x}, during the next year. By definition, $0 \leq q_{x} \leq 1$ and $q_{N}=1$, for some large enough $N \approx 110$.

Actuarial Mortality Rates: Part II

- A mortality table maps an age (x) into a probability of death q_{x}, during the next year. By definition, $0 \leq q_{x} \leq 1$ and $q_{N}=1$, for some large enough $N \approx 110$.
- The one-year survival rate is denoted by:

$$
p_{x}:=1-q_{x} .
$$

The one-year survival probability, p_{x}, is the probability that an x-year old individual will survive for at least one more year.

Actuarial Mortality Rates: Part II

- A mortality table maps an age (x) into a probability of death q_{x}, during the next year. By definition, $0 \leq q_{x} \leq 1$ and $q_{N}=1$, for some large enough $N \approx 110$.
- The one-year survival rate is denoted by:

$$
p_{x}:=1-q_{x} .
$$

The one-year survival probability, p_{x}, is the probability that an x-year old individual will survive for at least one more year.

- To survive for at least two more years, one has to survive the first year $\left(1-q_{x}\right)$, and then survive the second year $\left(1-q_{x+1}\right)$.

Actuarial Mortality Rates: Part II

- A mortality table maps an age (x) into a probability of death q_{x}, during the next year. By definition, $0 \leq q_{x} \leq 1$ and $q_{N}=1$, for some large enough $N \approx 110$.
- The one-year survival rate is denoted by:

$$
p_{x}:=1-q_{x} .
$$

The one-year survival probability, p_{x}, is the probability that an x-year old individual will survive for at least one more year.

- To survive for at least two more years, one has to survive the first year $\left(1-q_{x}\right)$, and then survive the second year $\left(1-q_{x+1}\right)$.
- As a result, the two-year survival probability is:

$$
\left(2 p_{x}\right):=\left(1-q_{x}\right)\left(1-q_{x+1}\right)=1-\left(2 q_{x}\right)
$$

Actuarial Mortality Rates: Part II

- A mortality table maps an age (x) into a probability of death q_{x}, during the next year. By definition, $0 \leq q_{x} \leq 1$ and $q_{N}=1$, for some large enough $N \approx 110$.
- The one-year survival rate is denoted by:

$$
p_{x}:=1-q_{x} .
$$

The one-year survival probability, p_{x}, is the probability that an x-year old individual will survive for at least one more year.

- To survive for at least two more years, one has to survive the first year $\left(1-q_{x}\right)$, and then survive the second year $\left(1-q_{x+1}\right)$.
- As a result, the two-year survival probability is:

$$
\left(2 p_{x}\right):=\left(1-q_{x}\right)\left(1-q_{x+1}\right)=1-\left(2 q_{x}\right)
$$

- Mind your p's and q's! It can get confusing.

Computing the General Survival Probability

- If an individual is currently aged x, then the probability of surviving to age n is denoted and defined by:

$$
\left({ }_{n} p_{x}\right)=\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)
$$

Computing the General Survival Probability

- If an individual is currently aged x, then the probability of surviving to age n is denoted and defined by:

$$
\left({ }_{n} p_{x}\right)=\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)
$$

- The probability that two (independent) people of age (x, y) survive for n years is equal to:

$$
\left({ }_{n} p_{x}\right)\left({ }_{n} p_{y}\right)=\left(\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)\right)\left(\prod_{i=0}^{n-1}\left(1-q_{y+i}\right)\right)
$$

Computing the General Survival Probability

- If an individual is currently aged x, then the probability of surviving to age n is denoted and defined by:

$$
\left({ }_{n} p_{x}\right)=\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)
$$

- The probability that two (independent) people of age (x, y) survive for n years is equal to:

$$
\left({ }_{n} p_{x}\right)\left({ }_{n} p_{y}\right)=\left(\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)\right)\left(\prod_{i=0}^{n-1}\left(1-q_{y+i}\right)\right)
$$

- The probability that at least one survives n-years:

$$
1-\left({ }_{n} q_{x}\right)\left({ }_{x} q_{y}\right)
$$

Computing the General Survival Probability

- If an individual is currently aged x, then the probability of surviving to age n is denoted and defined by:

$$
\left({ }_{n} p_{x}\right)=\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)
$$

- The probability that two (independent) people of age (x, y) survive for n years is equal to:

$$
\left({ }_{n} p_{x}\right)\left({ }_{n} p_{y}\right)=\left(\prod_{i=0}^{n-1}\left(1-q_{x+i}\right)\right)\left(\prod_{i=0}^{n-1}\left(1-q_{y+i}\right)\right)
$$

- The probability that at least one survives n-years:

$$
1-\left({ }_{n} q_{x}\right)\left({ }_{x} q_{y}\right)
$$

- Remember: Only Four (4) things can happen.

Numerical Examples: Mortality

- Question: Using Canadian population mortality rates, what is the probability that a 20 -year old (male/female) dies within the next five years, before the age of 25 ?

Numerical Examples: Mortality

- Question: Using Canadian population mortality rates, what is the probability that a 20 -year old (male/female) dies within the next five years, before the age of 25 ?
- Answer: Multiply the following together:

$$
1-\left(1-q_{20}\right)\left(1-q_{21}\right)\left(1-q_{22}\right)\left(1-q_{23}\right)\left(1-q_{24}\right)
$$

which is $1.00-0.99574=0.4253 \%$ for males and $1.00-0.99893=$ 0.1679% for females. Note that you do *not* add-up the age-dependent death rates, which are conditional probabilities.

Numerical Examples: Mortality

- Question: Using Canadian population mortality rates, what is the probability that a 20 -year old (male/female) dies within the next five years, before the age of 25 ?
- Answer: Multiply the following together:

$$
1-\left(1-q_{20}\right)\left(1-q_{21}\right)\left(1-q_{22}\right)\left(1-q_{23}\right)\left(1-q_{24}\right)
$$

which is $1.00-0.99574=0.4253 \%$ for males and $1.00-0.99893=$ 0.1679% for females. Note that you do *not* add-up the age-dependent death rates, which are conditional probabilities.

- Question: What is the probability that at-least one member of a 20-year old couple (male/female) dies before their 25th birthday?

Numerical Examples: Mortality

- Question: Using Canadian population mortality rates, what is the probability that a 20 -year old (male/female) dies within the next five years, before the age of 25 ?
- Answer: Multiply the following together:

$$
1-\left(1-q_{20}\right)\left(1-q_{21}\right)\left(1-q_{22}\right)\left(1-q_{23}\right)\left(1-q_{24}\right)
$$

which is $1.00-0.99574=0.4253 \%$ for males and $1.00-0.99893=$ 0.1679% for females. Note that you do *not* add-up the age-dependent death rates, which are conditional probabilities.

- Question: What is the probability that at-least one member of a 20-year old couple (male/female) dies before their 25th birthday?
- Answer:

$$
1-(0.998321)(0.995747)=0.59245 \%
$$

Numerical Examples: Mortality

- Question: Using Canadian population mortality rates, what is the probability that a 20 -year old (male/female) dies within the next five years, before the age of 25 ?
- Answer: Multiply the following together:

$$
1-\left(1-q_{20}\right)\left(1-q_{21}\right)\left(1-q_{22}\right)\left(1-q_{23}\right)\left(1-q_{24}\right)
$$

which is $1.00-0.99574=0.4253 \%$ for males and $1.00-0.99893=$ 0.1679% for females. Note that you do *not* add-up the age-dependent death rates, which are conditional probabilities.

- Question: What is the probability that at-least one member of a 20-year old couple (male/female) dies before their 25th birthday?
- Answer:

$$
1-(0.998321)(0.995747)=0.59245 \%
$$

- Are these probabilities independent, in practice?

Life Expectancy: The 50\% Mark

Life Expectancy at Birth in 2005	
Bottom 10 Countries	Top 10 Countries
Swaziland (35.3)	Japan (82.4)
Lesotho (36.3)	Sweden (80.7)
Djibouti (37.6)	Hong Kong (80.6)
Botswana (38.2)	Macao (80.07)
Mozambique (38.4)	Israel (79.97)
Malawi (40.52)	Iceland (79.91)
Sierra Leone (42.37)	Norway (79.73)
South Africa (42.44)	France (79.69)
Burundi (42.66)	Australia (79.64)
Rwanda (43.33)	
Source: Watson Wyatt	

Fair Actuarial Premium: One Year Term

- Consider a one-year term life insurance policy for an x-year-old individual, paying $\$ 1$ (at the end of the year) if the insured dies at any time during the year. The mortality rate is q_{x}, which implies that if the insurance company sells N of these polices it will have to pay death benefit claims on approximately $q_{x} N$ policies. The $q_{x} N$ will be paid at the end of the year, so its present value is: $q_{x} N /(1+v)$, where v denotes the valuation rate.

Fair Actuarial Premium: One Year Term

- Consider a one-year term life insurance policy for an x-year-old individual, paying $\$ 1$ (at the end of the year) if the insured dies at any time during the year. The mortality rate is q_{x}, which implies that if the insurance company sells N of these polices it will have to pay death benefit claims on approximately $q_{x} N$ policies. The $q_{x} N$ will be paid at the end of the year, so its present value is: $q_{x} N /(1+v)$, where v denotes the valuation rate.
- If the company is to insure N lives, then it must collect $q_{x} N /(1+v)$ up-front from the group of N people. This implies that it must collect $q_{x} /(1+v)$ per policy holder, under the assumption the company is non-profit enterprise.

Fair Actuarial Premium: One Year Term

- Consider a one-year term life insurance policy for an x-year-old individual, paying $\$ 1$ (at the end of the year) if the insured dies at any time during the year. The mortality rate is q_{x}, which implies that if the insurance company sells N of these polices it will have to pay death benefit claims on approximately $q_{x} N$ policies. The $q_{x} N$ will be paid at the end of the year, so its present value is: $q_{x} N /(1+v)$, where v denotes the valuation rate.
- If the company is to insure N lives, then it must collect $q_{x} N /(1+v)$ up-front from the group of N people. This implies that it must collect $q_{x} /(1+v)$ per policy holder, under the assumption the company is non-profit enterprise.
- The Actuarial Premium of a one-year life insurance policy is:

$$
A_{x: 1}:=\frac{q_{x}}{1+v}
$$

Actuarial Premium vs. Insurance Cost

- The quantity $A_{x: 1}$ is often referred to as the actuarial net single premium (NSP). The word actuarial is meant to remind you that the only thing the premium covers, is the pure death benefit. It does not account for profits or anything non actuarial.

Actuarial Premium vs. Insurance Cost

- The quantity $A_{x: 1}$ is often referred to as the actuarial net single premium (NSP). The word actuarial is meant to remind you that the only thing the premium covers, is the pure death benefit. It does not account for profits or anything non actuarial.
- In practice, of course, you would have to pay more than the no-profit (actuarial) cost to the insurance company, and so with a slight play on words, the Insurance Cost is defined as:

$$
\text { Insurance Cost }=(1+\Lambda) \times \text { Actuarial Premium }
$$

where the symbol $\Lambda>0$ denotes the percentage profit plus commission plus fees (loading) above and beyond the pure actuarial cost of insurance.

Fair Actuarial Premium: 2-Year Term

- The same logic can be used to derive the up-front actuarial price a two-year term life insurance policy which pays $\$ 1$ at the end of the year in which death occurs.

Fair Actuarial Premium: 2-Year Term

- The same logic can be used to derive the up-front actuarial price a two-year term life insurance policy which pays $\$ 1$ at the end of the year in which death occurs.
- In this case the actuarial premium for a two-year policy, denoted by $A_{x: 2}$, is computed by:

$$
A_{x: 2}=\frac{q_{x}}{1+v}+\frac{\left({ }_{1} p_{x}\right) q_{x+1}}{(1+v)^{2}}
$$

Fair Actuarial Premium: 2-Year Term

- The same logic can be used to derive the up-front actuarial price a two-year term life insurance policy which pays $\$ 1$ at the end of the year in which death occurs.
- In this case the actuarial premium for a two-year policy, denoted by $A_{x: 2}$, is computed by:

$$
A_{x: 2}=\frac{q_{x}}{1+v}+\frac{\left({ }_{1} p_{x}\right) q_{x+1}}{(1+v)^{2}}
$$

- Notice the pattern. The numerator is the probability of dying in a given year, and the denominator discounts for the time value of money (TVM) factor.

Fair Actuarial Premium: 2-Year Term

- The same logic can be used to derive the up-front actuarial price a two-year term life insurance policy which pays $\$ 1$ at the end of the year in which death occurs.
- In this case the actuarial premium for a two-year policy, denoted by $A_{x: 2}$, is computed by:

$$
A_{x: 2}=\frac{q_{x}}{1+v}+\frac{\left({ }_{1} p_{x}\right) q_{x+1}}{(1+v)^{2}}
$$

- Notice the pattern. The numerator is the probability of dying in a given year, and the denominator discounts for the time value of money (TVM) factor.
- What would this look like for 3 years of coverage?

Fair Actuarial Premium: N -Year Term

- The n-year term policy actuarial premium is:

$$
\left(A_{x: n}\right)=\sum_{j=0}^{n-1} \frac{\left(j p_{x}\right) q_{x+j}}{(1+v)^{j+1}}
$$

Fair Actuarial Premium: N -Year Term

- The n-year term policy actuarial premium is:

$$
\left(A_{x: n}\right)=\sum_{j=0}^{n-1} \frac{\left(j p_{x}\right) q_{x+j}}{(1+v)^{j+1}}
$$

- Finally, when the awkward term n is missing from the subscript $\left(A_{x}\right)$, the symbol denotes a policy with a term of infinity, which is basically a permanent life policy that never expires. Regardless of when you die, the insurance company pays your heirs a $\$ 1$ death benefit.

Fair Actuarial Premium: N -Year Term

- The n-year term policy actuarial premium is:

$$
\left(A_{x: n}\right)=\sum_{j=0}^{n-1} \frac{\left({ }_{j} p_{x}\right) q_{x+j}}{(1+v)^{j+1}}
$$

- Finally, when the awkward term n is missing from the subscript $\left(A_{x}\right)$, the symbol denotes a policy with a term of infinity, which is basically a permanent life policy that never expires. Regardless of when you die, the insurance company pays your heirs a $\$ 1$ death benefit.
- Note that rarely if ever do people pay the entire $A_{x: n}$ up-front and in one lump-sum. It is often amortized over the n-year period, which is actually more complicated than you think...

Numerical Examples: Insurance

- Question: Using the Canadian population mortality rates, please compute the monthly actuarial cost/price of a 1-year term life insurance policy for a Canadian male/female that pays $\$ 100,000$ if the individual dies during the year. Do this for age 30, 50 and then 70 , assuming a $v=5 \%$ valuation rate.

Numerical Examples: Insurance

- Question: Using the Canadian population mortality rates, please compute the monthly actuarial cost/price of a 1-year term life insurance policy for a Canadian male/female that pays $\$ 100,000$ if the individual dies during the year. Do this for age 30, 50 and then 70 , assuming a $v=5 \%$ valuation rate.
- Answer: Multiply the death probability $\left(q_{x}\right)$ by the death benefit ($\$ 100,000$), divide by the TVM factor (1.05) and express monthly.

Male:	$\frac{1}{12} A_{30: 1}=\$ 7.0$	$\frac{1}{12} A_{50: 1}=\$ 28.6$	$\frac{1}{12} A_{70: 1}=\$ 202.8$
Female:	$\frac{1}{12} A_{30: 1}=\$ 3.1$	$\frac{1}{12} A_{50: 1}=\$ 18.2$	$\frac{1}{12} A_{70: 1}=\$ 118.5$

Numerical Examples: Insurance

- Question: Using the Canadian population mortality rates, please compute the monthly actuarial cost/price of a 1-year term life insurance policy for a Canadian male/female that pays $\$ 100,000$ if the individual dies during the year. Do this for age 30, 50 and then 70 , assuming a $v=5 \%$ valuation rate.
- Answer: Multiply the death probability $\left(q_{x}\right)$ by the death benefit ($\$ 100,000$), divide by the TVM factor (1.05) and express monthly.

Male:	$\frac{1}{12} A_{30: 1}=\$ 7.0$	$\frac{1}{12} A_{50: 1}=\$ 28.6$	$\frac{1}{12} A_{70: 1}=\$ 202.8$
Female:	$\frac{1}{12} A_{30: 1}=\$ 3.1$	$\frac{1}{12} A_{50: 1}=\$ 18.2$	$\frac{1}{12} A_{70: 1}=\$ 118.5$

- How does this compare to the real-world prices I showed earlier? Why the discrepancy?

What About More Complicated Types?

- In addition to the insurance component, you might have a saving/investment component.

What About More Complicated Types?

- In addition to the insurance component, you might have a saving/investment component.
- The insurance could be permanent (for ever) or it can expire.

What About More Complicated Types?

- In addition to the insurance component, you might have a saving/investment component.
- The insurance could be permanent (for ever) or it can expire.
- Some policies offer a money-back guarantee and/or a cash-value if you decide to terminate the policy.

What About More Complicated Types?

- In addition to the insurance component, you might have a saving/investment component.
- The insurance could be permanent (for ever) or it can expire.
- Some policies offer a money-back guarantee and/or a cash-value if you decide to terminate the policy.
- In certain cases you can scale the death benefit up/down by changing the amount of the premiums.

What About More Complicated Types?

- In addition to the insurance component, you might have a saving/investment component.
- The insurance could be permanent (for ever) or it can expire.
- Some policies offer a money-back guarantee and/or a cash-value if you decide to terminate the policy.
- In certain cases you can scale the death benefit up/down by changing the amount of the premiums.
- Think of any insurance policy as money going into a (big) lock-box with two compartments. Some of the money is dedicated to pure protection, and other to pure investment. Each year you can decide how to move money between the two compartments.

Summary Table: 3 Different Life Insurance Policies

Types of Life Insurance (in Canada)

	Term	Whole Life	Universal Life
Features / Category	(Temporary)	(Permanent)	
Tax-sheltered Savings:			
Regular Dividends:			
Investment Options:			
Cheap and Low Cost:			
Flexible Premiums:			
Popularity / Market:	30%	25%	45%

Summary Table: 3 Different Life Insurance Policies

Types of Life Insurance (in Canada)

	Term	Whole Life	Universal Life
Features / Category	(Temporary)	(Permanent)	
Tax-sheltered Savings:	No	Yes	Yes
Regular Dividends:	No	Yes	No
Investment Options:	No	No	Yes
Cheap and Low Cost:	Yes	No	No
Flexible Premiums:	No	No	Yes
Popularity / Market:	30%	25%	45%

Tradeoff: Short Term vs. Long Term

Annual Premium (\$)

Which One is Best for Me and My Family?

- Starting out - when you have a young family with dependents consider term insurance.

Which One is Best for Me and My Family?

- Starting out - when you have a young family with dependents consider term insurance.
- As you progress thru the lifecycle, you might want to consider more permanent (expensive) types of insurance.

Which One is Best for Me and My Family?

- Starting out - when you have a young family with dependents consider term insurance.
- As you progress thru the lifecycle, you might want to consider more permanent (expensive) types of insurance.
- Some financial experts claim that you should never purchase anything other than term and "invest the difference".

Which One is Best for Me and My Family?

- Starting out - when you have a young family with dependents consider term insurance.
- As you progress thru the lifecycle, you might want to consider more permanent (expensive) types of insurance.
- Some financial experts claim that you should never purchase anything other than term and "invest the difference".
- If you have used-up RRSP and TFSA room, you might want to consider using insurance for tax-reasons as opposed to risk-management reasons (only).

Which One is Best for Me and My Family?

- Starting out - when you have a young family with dependents consider term insurance.
- As you progress thru the lifecycle, you might want to consider more permanent (expensive) types of insurance.
- Some financial experts claim that you should never purchase anything other than term and "invest the difference".
- If you have used-up RRSP and TFSA room, you might want to consider using insurance for tax-reasons as opposed to risk-management reasons (only).
- Owners of a small-business with partners (or even a family cottage) might have buy/sell clauses in their agreements, or tax liabilities upon death that might create a need for insurance.

How Much Do I Need Exactly?

Life Insurance Death Benefit: How Much Do You Need?

Final Words About Consumption Smoothing

- The same exact principles would apply to disability insurance, health insurance as well as critical illness insurance. In this case the payout would go to the insured (as opposed to beneficiary). The actuarial modeling approach is exactly the same.

Final Words About Consumption Smoothing

- The same exact principles would apply to disability insurance, health insurance as well as critical illness insurance. In this case the payout would go to the insured (as opposed to beneficiary). The actuarial modeling approach is exactly the same.
- Insurance protects your human capital and enables you to treat it as a safer asset. In fact, some might argue that (net) human capital should be valued by subtracting-off the cost of insurance from the discounted wages.

Final Words About Consumption Smoothing

- The same exact principles would apply to disability insurance, health insurance as well as critical illness insurance. In this case the payout would go to the insured (as opposed to beneficiary). The actuarial modeling approach is exactly the same.
- Insurance protects your human capital and enables you to treat it as a safer asset. In fact, some might argue that (net) human capital should be valued by subtracting-off the cost of insurance from the discounted wages.
- By insuring your human capital you are implicitly smoothing consumption across states of nature (scenarios) in which your health is worse than expected.

Final Words About Consumption Smoothing

- The same exact principles would apply to disability insurance, health insurance as well as critical illness insurance. In this case the payout would go to the insured (as opposed to beneficiary). The actuarial modeling approach is exactly the same.
- Insurance protects your human capital and enables you to treat it as a safer asset. In fact, some might argue that (net) human capital should be valued by subtracting-off the cost of insurance from the discounted wages.
- By insuring your human capital you are implicitly smoothing consumption across states of nature (scenarios) in which your health is worse than expected.
- Like any other type of insurance, don't over-pay or waste premiums on unnecessary protection!

